• Title/Summary/Keyword: mutual interference

Search Result 155, Processing Time 0.028 seconds

Resource Allocation Scheme Based on Spectrum Sensing for Device-to-Device Communications Underlaying Cellular Networks (셀룰러 네트워크 환경에서 D2D 통신을 위한 스펙트럼 센싱 기반 자원 할당 기법)

  • Kang, Gil-Mo;Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.10
    • /
    • pp.898-907
    • /
    • 2013
  • For D2D communications underlaying cellular networks, it is essential to consider the mutual interference between the existing cellular communications and D2D communications as well as the spectral efficiency, as they need to share the same frequency. Accordingly, a resource allocation scheme should be designed in such a way that minimizes the mutual interference and maximizes the spectrum utilization efficiency at the same time. In this paper, we propose a resource allocation scheme based on cooperation of the base station and D2D terminals. Specifically, a D2D terminal senses the cellular spectrum to recognize the interference condition, chooses the best cellular resource, and reports the information to the base station. The base station allocates D2D resource such that the corresponding D2D link and cellular link share the same resource. The performance of the proposed resource allocation scheme is ated through compu under 3GPP LTE-Advanced scenarios.

A Cognitive Beamforming Scheme for Cross-Tier Interference Mitigation in Heterogeneous Cellular Networks (이종 셀룰러 망에서 계층 간 간섭완화를 위한 인지 빔형성 기법)

  • Seo, Ju-yeol;Park, Seungyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1387-1401
    • /
    • 2016
  • When a closed access policy in which only an authorized user is allowed to access to a given base station (BS) has been employed in heterogeneous cellular networks, a macro-cell user is used to experience strong cross-tier interference from its adjacent small-cell BSs to which the user is not allowed to access. To mitigate this problem, it has been proposed that a small-cell BS employs a beamforming vector which is orthogonal to the channel of the victim user. However, this technique requires considerable mutual exchange of information among the macro-cell BS, the macro-cell user, and the small-cell BS. In this paper, we propose a cognitive beamforming scheme, in which a small-cell BS employs the beamforming orthogonal to the victim users' channel without any explicit mutual information exchange. Particularly, the small-cell BS finds small- and macro-cell users experiencing the co-tier and cross-tier interferences from it, respectively. Then, it employs a beamforming which is orthogonal to the victim users' channels to mitigate the co-tier and cross-tier interferences. Using the system-level simulation, we demonstrate that the proposed scheme effectively mitigates the cross-tier interference problem.

Statistically Controlled Opportunistic Resource Block Sharing for Femto Cell Networks

  • Shin, Dae Kyu;Choi, Wan;Yu, Takki
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.469-475
    • /
    • 2013
  • In this paper, we propose an efficient interference management technique which controls the number of resource blocks (or subcarriers) shared with other cells based on statistical interference levels among cells. The proposed technique tries to maximize average throughput of a femto cell user under a constraint on non-real time control of a femto cell network while guaranteeing a target throughput value of a macro cell user. In our proposed scheme, femto cells opportunistically use resource blocks allocated to other cells if the required average user throughput is not attained with the primarily allocated resource blocks. The proposed method is similar to the underlay approach in cognitive radio systems, but resource block sharing among cells is statistically controlled. For the statistical control, a femto cell sever constructs a table storing average mutual interference among cells and periodically updates the table. This statistical approach fully satisfies the constraint of non-real time control for femto cell networks. Our simulation results show that the proposed scheme achieves higher average femto user throughput than conventional frequency reuse schemes for time varying number of users.

Individual Channel Estimation Based on Blind Interference Cancellation for Two-Way MIMO Relay Networks

  • He, Xianwen;Dou, Gaoqi;Gao, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3589-3605
    • /
    • 2018
  • In this paper, we investigate an individual channel estimation problem for multiple-input multiple-output (MIMO) two-way amplify-and-forward (AF) relay networks. To avoid self-interference during the estimation of the individual MIMO channels, a novel blind interference cancellation (BIC) approach is proposed based on an orthogonal preceding framework, where a pair of orthogonal precoding matrices is utilized at the source nodes. By designing an optimal decoding scheme, we propose to decompose the bidirectional transmission into a pair of unidirectional transmissions. Unlike most existing approaches, we make the practical assumption that the nonreciprocal MIMO channel and the mutual interference of multiple antennas are both taken into consideration. Under the precoding framework, we employ an orthogonal superimposed training strategy to obtain the individual MIMO channels. However, the AF strategy causes the noise at the terminal to be the sum of the local noise and the relay-propagated noise. To remove the relay-propagated noise during the estimation of the second-hop channel, a partial noise-nulling method is designed. We also derive a closed-form expression for the total mean square error (MSE) of the MIMO channel from which we compute the optimal power allocation. The simulation results demonstrate that the analytical and simulated curves match fully.

Cell Radius & Guard Band Requirements by Mutual Interference Investigation between Satellite Digital Systems using Gap-filler (Gap-filler를 이용하는 위성 DMB 시스템 간의 상호간섭분석에 의한 보호대역 및 적정 셀 반경 설정)

  • Cha Insuk;Park SungHo;Chang KyungHi;You Heung-Ryeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6A
    • /
    • pp.499-509
    • /
    • 2005
  • The capacity of Satellite DMB(Digital Multimedia Broadcasting) system is limited mainly by the interference. So, to achieve the expected performance of Satellite DMB system and to minimize the interference from other Satellite DMB system, ACI(Adjacent Channel Interference) should be considered carefully. Satellite DMB system uses the Gap-filler for effective transmission in terrestrial environment, and the Gap-filler can use direct amplification or frequency conversion to satisfy the specific requirements. Therefore, amplified signal causes several effects on interference between System A(Eureka 147 DAB) and System E(ISDB : Integrated services Digital Broadcasting). In this paper, by using the outcome of system-level simulation considering the results of link-level simulation, we analyze the interferences between System A and System E under practical situation based on the exact parameters of ITU-R BO. 1130-4. We also propose the appropriate level of guard band and Cell Radius to optimize system capacity by adapting the spectrum mask given in the spec. and utilizing the interference analysis between System A and System E.

Performance Analysis of BLE System for Wireless IoT Network Design (IoT 무선 네트워크 설계를 위한 BLE 시스템의 성능 분석)

  • Jae-sung Roh
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.481-486
    • /
    • 2022
  • The recent rapid growth of the IoT(Internet of Things) is leading to the spread of low-power wireless technology. A major challenge in designing IoT wireless networks is to achieve coexistence between different wireless technologies that share the 2.4 [GHz] ISM (Industrial Scientific Medical) frequency band. Therefore, there is a need for research on improving the reliability of wireless networks and coexisting operation between wireless networks. In particular, it is necessary to study an interference model and performance for mutual service coexistence in a BLE (Bluetooth Low Energy) wireless network environment, which is expected to be widely used as a connection medium between devices in various industrial fields. In this paper, the co-channel interference model with the IEEE 802.15.4 system is established focusing on the physical layer of the BLE system widely used in residential and industrial wireless applications, and the performance of the BLE wireless communication system is analyzed in the co-channel interference environment. As a result of the analysis, as the distance between the interference source and the BLE system increases in an environment where noise and co-channel interference exist, the amount of co-channel interference decreases and the error rate performance of the BLE system improves.

A Model for Machine Fault Diagnosis based on Mutual Exclusion Theory and Out-of-Distribution Detection

  • Cui, Peng;Luo, Xuan;Liu, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2927-2941
    • /
    • 2022
  • The primary task of machine fault diagnosis is to judge whether the current state is normal or damaged, so it is a typical binary classification problem with mutual exclusion. Mutually exclusive events and out-of-domain detection have one thing in common: there are two types of data and no intersection. We proposed a fusion model method to improve the accuracy of machine fault diagnosis, which is based on the mutual exclusivity of events and the commonality of out-of-distribution detection, and finally generalized to all binary classification problems. It is reported that the performance of a convolutional neural network (CNN) will decrease as the recognition type increases, so the variational auto-encoder (VAE) is used as the primary model. Two VAE models are used to train the machine's normal and fault sound data. Two reconstruction probabilities will be obtained during the test. The smaller value is transformed into a correction value of another value according to the mutually exclusive characteristics. Finally, the classification result is obtained according to the fusion algorithm. Filtering normal data features from fault data features is proposed, which shields the interference and makes the fault features more prominent. We confirm that good performance improvements have been achieved in the machine fault detection data set, and the results are better than most mainstream models.

A Study on the "Vertrauensgrundsatz" in aviation (항공 교통에서의 신뢰의 원칙)

  • Ham, Se-Hoon;Whang, Ho-Woon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.2
    • /
    • pp.45-51
    • /
    • 2011
  • The article specified in aviation legislation, 'The captain has the final authority and responsibility in flight safety' could be one reason running counter to applying "Vertrauensgrundsatz". In practice, however, captains do not have professional skills in every task and they should distribute duties and responsibilities to flight attendents and other staffs to operate the flight as safely and efficiently as possible. Therefore, in aviation, fair criterion, namely, "Vertrauensgrundsatz" is necessary to balance between efficiency and legal interest for participants. In addition, when it comes to mutual trust of duty which was the starting point of this study, the standard in mutual advice or interference must be based on the duty specified in air law and flight regulations. Also, pervasive trust will not only be attributed to joint responsibility but an act that cannot be trusted.

An Intersection Validation and Interference Elimination Algorithm between Weapon Trajectories in Multi-target and Multi-weapon Environments (다표적-다무장 환경에서 무장 궤적 간 교차 검증 및 간섭 배제 알고리즘)

  • Yoon, Moonhyung;Park, Junho;Yi, JeongHoon;Kim, Kapsoo;Koo, BongJoo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.9
    • /
    • pp.614-622
    • /
    • 2018
  • As multiple weapons are fired simultaneously in multi-target and multi-weapon environments, a possibility always exists in the collision occurred by the intersection between weapon trajectories. The collision between weapons not only hinders the rapid reaction but also causes the loss of the asset of weapons of friendly force to weaken the responsive power against the threat by an enemy. In this paper, we propose an intersection validation and interference elimination algorithm between weapon trajectories in multi-target and multi-weapon environments. The core points of our algorithm are to confirm the possible interference through the analysis on the intersections between weapon trajectories and to eliminate the mutual interference. To show the superiority of our algorithm, we implement the evaluation and verification of performances through the simulation and visualization of our algorithm. Our experimental results show that the proposed algorithm performs effectively the interference elimination regardless of the number of targets and weapon groups by showing that no cross point exists.

Study on Coexistence between WiBro and WLAN in DTV Bands (DTV 대역에서 WiBro와 무선랜의 상호공존성에 관한 연구)

  • Cheng, Yan-Ming;Cho, In-Kyoung;Shim, Yong-Sup;Lee, Il-Kyoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2770-2776
    • /
    • 2011
  • Mutual Interference scenarios between Wireless Broadband (WiBro) and Wireless LAN (WLAN) in DTV bands are assumed. Co-channel interference and adjacent channel interference are respectively evaluated in terms of carrier to interference ratio (C/I) by using Spectrum Engineering Advanced Monte Carlo Analysis Tool (SEAMCAT) based on the Monte-Carlo simulation method. For the simulation, three frequencies such as 185 MHz, 481 MHz and 687 MHz are chosen. Analysis results indicate that interference situation of using frequency of 185 MHz is the worst case, which requires longer protection distance between WiBro MS and WLAN User Equipment (UE), lower transmit power of WiBro Mobile Station (MS) and WiBro Base Station (BS) and WLAN UE and larger guard band. Comparing to cases of using frequency of 185 MHz and 481 MHz, interference situation of using frequency of 687 MHz is slighter. Therefore, using frequency of 687 MHz is easier for coexistence between WiBro and WLAN. Analysis results can be used as reference and guideline when planning the deployment of WiBro and WLAN in DTV bands.