DOI QR코드

DOI QR Code

다표적-다무장 환경에서 무장 궤적 간 교차 검증 및 간섭 배제 알고리즘

An Intersection Validation and Interference Elimination Algorithm between Weapon Trajectories in Multi-target and Multi-weapon Environments

  • 투고 : 2018.08.03
  • 심사 : 2018.08.27
  • 발행 : 2018.09.28

초록

다표적-다무장 전장 환경에서는 다수의 무장이 동시에 발사되기 때문에 무장 간의 궤적 교차로 인한 충돌이 발생할 가능성이 항시 존재한다. 무장간 충돌은 신속한 작전 수행을 저해할 뿐만 아니라 아군 무장 자산을 무의미하게 손실시킴으로써 아군의 적군에 대한 위협 대응력을 약화시킨다. 본 논문에서는 다표적-다무장전장 환경에서 무장 궤적 간 교차 검증 및 간섭 배제 알고리즘을 제안한다. 제안하는 알고리즘은 무장 궤적 간 교차 분석을 통해 간섭 여부를 확인 한 후, 교차점이 발생할 경우 무장 궤적 간의 상호 간섭을 배제하는 것을 핵심으로 한다. 본 논문에서는 제안하는 알고리즘의 시뮬레이션 및 가시화를 통해 성능 평가 및 검증을 수행하였다. 성능 평가 결과 제안하는 알고리즘은 표적 수 및 무장군 수와 무관하게 교차점이 존재하지 않음을 보여줌으로써 효과적인 간섭 배제를 수행함을 입증하였다.

As multiple weapons are fired simultaneously in multi-target and multi-weapon environments, a possibility always exists in the collision occurred by the intersection between weapon trajectories. The collision between weapons not only hinders the rapid reaction but also causes the loss of the asset of weapons of friendly force to weaken the responsive power against the threat by an enemy. In this paper, we propose an intersection validation and interference elimination algorithm between weapon trajectories in multi-target and multi-weapon environments. The core points of our algorithm are to confirm the possible interference through the analysis on the intersections between weapon trajectories and to eliminate the mutual interference. To show the superiority of our algorithm, we implement the evaluation and verification of performances through the simulation and visualization of our algorithm. Our experimental results show that the proposed algorithm performs effectively the interference elimination regardless of the number of targets and weapon groups by showing that no cross point exists.

키워드

참고문헌

  1. S. Paradis, A. Benaskeur, M. Oxenham, and P. Cutler, "Threat Evaluation and Weapons Allocation in Network-Centric Warfare," In Proc. of the International Conference on Information Fusion, Vol.2, pp.1078-1085, 2005.
  2. J. Roux and J. Vuuren, "Threat Evaluation and Weapon Assignment Decision Support: A Review of the State of the Art," ORiON, Vol.23, No.2, pp.151-187, 2007.
  3. M. Azak and A. Bayrak, "A New Approach for Threat Evaluation and Weapon Assignment Problem, Hybrid Learning with Multi-Agent Coordination," In Proc. of the International Symposium on Computer and Information Sciences, pp.1-6, 2008.
  4. M. Yoon, J. Park, J. Yi, and B. Koo, "An Effective Weapon Assignment Algorithm in Multi-Target and Multi-Weapon," In Proc. of the International Conference on Convergence Content, pp.395-396, 2016.
  5. Y. Li, Y. Kou, Z. Li, A. Xu, and Y. Chang, "A Modified Pareto Ant Colony Optimization Approach to Solve Biobjective Weapon-Target Assignment Problem," International Journal of Aerospace Engineering, Vol.2017, Article ID.1746124, pp.1-14, 2017.
  6. S. Bisht, "Hybrid Genetic-Simulated Annealing Algorithm for Optimal Weapon Allocation in Multilayer Defence Scenario," Defence Science Journal, Vol.54, No.3, pp.395-405, 2004. https://doi.org/10.14429/dsj.54.2054
  7. G. Shang, Z. Zaiyue, Z. Xiaoru, and C. Cungen, "Immune Genetic Algorithm for Weapon-Target Assignment Problem," In Proc. of the Workshop on Intelligent Information Technology Application, pp.145-148, 2017.
  8. J. Zhang and X. Wang, "ACGA Algorithm of Solving Weapon-Target Assignment Problem," Open Journal of Applied Sciences, Vol.2, No.4B, pp.74-77, 2012. https://doi.org/10.4236/ojapps.2012.24B018
  9. M. Zhang, J. Zhang, G. Cheng, C. Chen, and Z. Liu, "Fire Scheduling for Multiple Weapons Cooperative Engagement," In Proc. of the International Conference on Software, Knowledge, Information Management & Applications, pp.55-60, 2016.
  10. http://www.mathworks.com, 2018.7.31.