• Title/Summary/Keyword: musculoskeletal modeling

Search Result 33, Processing Time 0.034 seconds

Formulation of Human Modeling and Simulation in the Shipbuilding Industry (인체 모델링과 시뮬레이션 기법의 조선산업 적용에 관한 연구)

  • Kim, Dong-Joon;Park, Ju-Yong;Min, Kyong-Cheol;Chang, Seong-Rok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.114-118
    • /
    • 2006
  • Recently, work-related musculoskeletal disorders(WMSDs) is one of the major issues in the shipbuilding industry. The number of injured workers has rapidly increased and demands for workers compensation, improvement of work condition and environment to prevent WMSDs become larger. To protect and reduce WMSDs in the shipbuilding industry, simulation technique which showed it's ability of increasing the manufacturing productivity will be applied, because simulation technique has the evaluation ability for a worker's danger level of production process by human activity analysis. In our research, we modeled worker's attitude and simulated worker's action. We evaluated the caution level, compared and analyzed the difference point of digital human which made on computer and actual worker's attitude to check feasibility of human modeling and simulation in the shipbuilding industry.

A Study on the Analysis of Korean Medical Services using Latent Dirichlet Allocation Topic Modeling : Focusing on online reviews by medical consumers (Latent Dirichlet Allocation 토픽모델링을 이용한 한방 의료 서비스 분석에 관한 연구 : 의료 소비자의 온라인 리뷰를 중심으로)

  • Son, Chaeyeon;Song, Yeonwoo;Lee, Seungho
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.43-57
    • /
    • 2022
  • Objective : This study aims to understand the consumer's needs for Korean medicine medical service using online review analysis of medical consumers. Methods : We analyzed the purpose and satisfaction factors of medical service use using LDA (Latent Dirichlet Allocation) topic modeling. The data used in the study was 120,727 screened reviews written by medical consumers registered on Naver. The analyzed results were compared with the "2020 Korean Medicine Utilization Survey". Results : From 2018 to 2021, the five most frequently used terms were "kindness", "treatment", "doctor", "Korean medicine", and "acupuncture". The main purpose of visiting Korean medicine medical clinic and hospital was to treat "traffic accidents" in 2018, "waist(back) pain" in 2019, "musculoskeletal pain" in 2020 & 2021. Based on the rating, reviewers were satisfied with "explanation of treatment" and "treatment attitude", and dissatisfied with "accessibility to the institution". Conclusion : We concluded that the main purpose of use of Korean medicine institution was to treat musculoskeletal disorders. Based on the results of this study, it is expected that it will be used to improve Korean medicine medical service in the future.

The elbow is the load-bearing joint during arm swing

  • Bokku Kang;Gu-Hee Jung;Erica Kholinne;In-Ho Jeon;Jae-Man Kwak
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.2
    • /
    • pp.126-130
    • /
    • 2023
  • Background: Arm swing plays a role in gait by accommodating forward movement through trunk balance. This study evaluates the biomechanical characteristics of arm swing during gait. Methods: The study performed computational musculoskeletal modeling based on motion tracking in 15 participants without musculoskeletal or gait disorder. A three-dimensional (3D) motion tracking system using three Azure Kinect (Microsoft) modules was used to obtain information in the 3D location of shoulder and elbow joints. Computational modeling using AnyBody Modeling System was performed to calculate the joint moment and range of motion (ROM) during arm swing. Results: Mean ROM of the dominant elbow was 29.7°±10.2° and 14.2°±3.2° in flexion-extension and pronation-supination, respectively. Mean joint moment of the dominant elbow was 56.4±12.7 Nm, 25.6±5.2 Nm, and 19.8±4.6 Nm in flexion-extension, rotation, and abduction-adduction, respectively. Conclusions: The elbow bears the load created by gravity and muscle contracture in dynamic arm swing movement.

Evaluation of Related Risk Factors in Number of Musculoskeletal Disorders Among Carpet Weavers in Iran

  • Karimi, Nasim;Moghimbeigi, Abbas;Motamedzade, Majid;Roshanaei, Ghodratollah
    • Safety and Health at Work
    • /
    • v.7 no.4
    • /
    • pp.322-325
    • /
    • 2016
  • Background: Musculoskeletal disorders (MSDs) are a common problem among carpet weavers. This study was undertaken to introduce affecting personal and occupational factors in developing the number of MSDs among carpet weavers. Methods: A cross-sectional study was performed among 862 weavers in seven towns with regard to workhouse location in urban or rural regions. Data were collected by using questionnaires that contain personal, workplace, and information tools and the modified Nordic MSDs questionnaire. Statistical analysis was performed by applying Poisson and negative binomial mixed models using a full Bayesian hierarchical approach. The deviance information criterion was used for comparison between models and model selection. Results: The majority of weavers (72%) were female and carpet weaving was the main job of 85.2% of workers. The negative binomial mixed model with lowest deviance information criterion was selected as the best model. The criteria showed the convergence of chains. Based on 95% Bayesian credible interval, the main job and weaving type variables statistically affected the number of MSDs, but variables age, sex, weaving comb, work experience, and carpet weaving looms were not significant. Conclusion: According to the results of this study, it can be concluded that occupational factors are associated with the number of MSDs developing among carpet weavers. Thus, using standard tools and decreasing hours of work per day can reduce frequency of MSDs among carpet weavers.

Assesment on the Transformation of Psychological Risk Images due to Development of Flight Skills (조종 숙련도 변화에 따른 심리적 리스크 이미지의 변화에 대한 평가)

  • Kim, Yeong-Gwan;Im, Hyeon-Gyo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.57-67
    • /
    • 2003
  • The resonance behaviour needs be understood to identify the mechanisms responsible for the dynamic characteristics of human body, to allow for the non-linearity when predicting the influence of seating dynamics. and to predict the adverse effects caused by various magnitudes of vibration. However, there are currently no known studies on the effect of vibration magnitude on the transmissibility to thoracic or lumbar spine of the seated person. despite low back pain(LBP) being the most common ailment associated with whole-body vibration. The objective of this paper is to develop a proper mathematical human model for LBP and musculoskeletal injury of the crew in a maritime vehicle. In this study, 7 degree-of-freedom including 2 non-rigid mass representing wobbling visceral and intestine mass, is proposed. Also. when compared with previously published experimental results, the model response was found to be well-matching. When exposed to various of vertical vibration, the human model shows appreciable non-linearity in its biodynamic responses. The relationships of resonance for LBP and musculoskeletal injury during whole-body vibration are also explained.

Construction Ergonomic Intervention to Reduce Musculoskeletal Disorders in Aluminum Formworkers

  • Kim, Dae Young;Yi, Hak;Lee, Sang Ryong;Kim, Bubryur;Lee, Dong-Eun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.465-472
    • /
    • 2022
  • Manual material handling is the one of the leading causes for musculoskeletal disorders (MSDs) and lower back discomfort. According to a study, construction formworkers suffer greater rates of muscular injuries and related illness due to manual activities. However, there is still a paucity of information on MSD, preventive posture issues, and corresponding solutions for construction aluminum formworkers. As a result, MSD and disregard of worker health and safety continue to exist at construction sites. Although preventive measures and strategies have been studied in previous research, we believe it is imperative to shed light on this problem through this study. This study aims to 1) implement a simple and cost-effective elevated bench to reduce MSDs, and 2) determine the rapid upper limbs assessment (RULA) and Ovako working posture analyzing system (OWAS) action catagory of workers in different postures to assess their MSD conditions and obtain an optimal position and posture using the Jack human modeling software and simulation tool. The study findings reveal a considerable reduction in MSD discomfort and which posture is acceptable in post-intervention instances.Thus results provide inexpensive and simple ergonomic interventions with favorable RULA and OWAS ratings that can be applied at construction sites. This study demonstrates workstation ergonomic intervention cases that can aid in understanding the urgency of applying existing research strategies into practice.

  • PDF

Modeling and Development of Human-Muscle Type Humanoid (인체근육 구조 인간형 로봇의 모델링 및 구현)

  • Oh, Ji-Heon;Yi, Byung-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.64-72
    • /
    • 2007
  • Many human-body motions such as walking, running, jumping, etc. require a significant amount of power. To achieve a high power-to-weight ratio of the humanoid robot system, this paper proposes a new design of the bio-mimetic leg mechanism resembling musculoskeletal system of the human body. The hip joints of the system considered here are powered by 5 human-like bi-and mono-articular muscles, and the joints of knee and ankle are redundantly actuated by both bi-articular muscles and joint actuators. The kinematics for the leg mechanism is derived and a kinematic index to measure force transmission ratio is introduced. It is demonstrated through simulation that incorporation of redundant muscles into the leg mechanism enhances the power of the mechanism approximately 2 times of the minimum actuation.

Effects of Prosthetic Mass Distribution on Musculoskeletal System during Amputee Gait (의지 보행시 의지 무게 분포가 근골격계에 미치는 영향)

  • Bae, Tae-Soo;Choi, Hwan;Kim, Shin-Ki;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.130-137
    • /
    • 2007
  • The optimized prosthetic mass distribution was a controversial problem in the previous studies because they are not supported by empirical evidence. The purpose of the present study was to evaluate the effect of prosthetic mass properties by modeling musculoskeletal system, based on the gait analysis data from two above-knee amputees. The joint torque at hip joint was calculated using inverse dynamic analysis as the mass was changed in knee and foot prosthetic components with the same joint kinematics. The results showed that the peak flexion and abduction torque at the hip joint were 5 Nm and 15 Nm when the mass of the knee component was increased, greater than the peak flexion and abduction torque of the control group at the hip joint, respectively. On the other hand, when the mass of the foot component was increased, the peak flexion and abduction torque at the hip joint were 20 Nm and 15 Nm, greater than the peak flexion and abduction torque of the control, respectively. The hip flexion torque was 4.71-fold greater and 7.92-fold greater than the hip abduction torque for the knee mass increase and the foot mass increase on the average, respectively. Therefore, we could conclude that the effect of foot mass increase was more sensitive than that of knee mass increase for the hip flexion torque. On the contrary, the mass properties of the knee and foot components were not sensitive for the hip abduction torque. In addition, optimized prosthetic mass and appropriate mass distributions were needed to promote efficiency of rehabilitation therapy with consideration of musculoskeletal systems of amputees.

A Study for Improvement of Work using Digital Human Modeling (디지털 휴먼 모델링 도구를 이용한 작업 개선에 관한 연구)

  • Kim, Dong-Joon;Park, Ju-Yong;Kim, Hyun-Woo;Chang, Seong-Rok
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.51-56
    • /
    • 2008
  • In these days, work-related musculoskeletal disorders(WMSDs) is one of the issues in the shipbuilding industry. As the number of injured workers and demands for worker's compensation have rapidly increased, improvement of work conditions and environments to prevent WMSDs has been more demanded. To reduce WMSDs' hazards in the shipbuilding industry, simulation technique which showed it's ability of increasing the manufacturing productivity was applied, because simulation technique has the evaluation ability for a worker's danger level of production process by RULA(Rapid Upper Limb Assesment). In this research, worker's altitude had modeled and worker's action has simulated. After the caution level was evaluated, we pointed out clues which had high workload. To reduce work-load, we applied ergonomic principles for improving working conditions and environments. Improved working conditions and environments were simulated using human modelling and simulation and their workload were evaluated again.