• 제목/요약/키워드: multivariate analysis

검색결과 3,282건 처리시간 0.023초

Multivariate analysis of longitudinal surveys for population median

  • Priyanka, Kumari;Mittal, Richa
    • Communications for Statistical Applications and Methods
    • /
    • 제24권3호
    • /
    • pp.255-269
    • /
    • 2017
  • This article explores the analysis of longitudinal surveys in which same units are investigated on several occasions. Multivariate exponential ratio type estimator has been proposed for the estimation of the finite population median at the current occasion in two occasion longitudinal surveys. Information on several additional auxiliary variables, which are stable over time and readily available on both the occasions, has been utilized. Properties of the proposed multivariate estimator, including the optimum replacement strategy, are presented. The proposed multivariate estimator is compared with the sample median estimator when there is no matching from a previous occasion and with the exponential ratio type estimator in successive sampling when information is available on only one additional auxiliary variable. The merits of the proposed estimator are justified by empirical interpretations and validated by a simulation study with the help of some natural populations.

Relevance of Multivariate Analysis in Management Research

  • Ojha, Sateesh Kumar
    • Journal of Information Technology Applications and Management
    • /
    • 제23권3호
    • /
    • pp.25-34
    • /
    • 2016
  • Often we receive misled conclusion in the research if properly variables are not analyzed. In different functional issues of management it is very essential that all the latent and observed variable are properly understood so management decisions will be relevant and effective. The objective of this paper is to investigate the use of different multivariate tools for analyzing in the management research : applied or basic. The sources of data is primary as well as secondary. The primary includes the observation of different research articles of the proceedings of different conferences. And the secondary includes different publications related to multivariate analysis. The study has revealed the reasons of not using such tools of research. The preliminary finding reveals that most of the researches do not use such analytical tools in a comprehensive manner. Carelessness in design while fixing the design aspect is the main reasons of not using appropriate design.

경영정보의 인과구조 구축을 위한 다변량통계기법 적용에 관한 연구 (A study on applying multivariate statistical method for making casual structure in management information)

  • 조성훈;김태성
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1996년도 추계학술대회발표논문집; 고려대학교, 서울; 26 Oct. 1996
    • /
    • pp.117-120
    • /
    • 1996
  • The objective of this study is to suggest modified Covariance Structure Analysis that combine with existing Multivariate Statistical Method which is used Casual Analysis Method in Management Information. For this purpose, we'll consider special feature and limitation about Correlation Analysis, Regression Analysis, Path Analysis and connect Covariance Structure Analysis with Statistical Factor Analysis so that theoretical casual model compare with variables structure in collecting data. A example is also presented to show the practical applicability of this approach.

  • PDF

근적외선분광법을 이용한 택사의 산지 판별법 연구 (Discrimination of Alismatis Rhizoma According to Geographical Origins using Near Infrared Spectroscopy)

  • 이동영;김승현;김효진;성상현
    • 생약학회지
    • /
    • 제44권4호
    • /
    • pp.344-349
    • /
    • 2013
  • Near infrared spectroscopy (NIRS) combined with multivariate analysis was used to discriminate the geographical origin of Alisma orientale from Korea (n=94) and China (n=72). Two-thirds of samples were selected randomly for the training set, and one-third of samples for the test set. Second derivative was used for the pretreatment of NIR spectra. Partial least square discriminant analysis (PLS-DA) models correctly discriminated 100% of the Korean and Chinese A. orientale samples. These results demonstrate the potential use of NIR spectroscopy combined with multivariate analysis as a rapid and accurate method to discriminate A. orientale according to their geographical origin.

Combining cluster analysis and neural networks for the classification problem

  • Kim, Kyungsup;Han, Ingoo
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1996년도 추계학술대회발표논문집; 고려대학교, 서울; 26 Oct. 1996
    • /
    • pp.31-34
    • /
    • 1996
  • The extensive researches have compared the performance of neural networks(NN) with those of various statistical techniques for the classification problem. The empirical results of these comparative studies have indicated that the neural networks often outperform the traditional statistical techniques. Moreover, there are some efforts that try to combine various classification methods, especially multivariate discriminant analysis with neural networks. While these efforts improve the performance, there exists a problem violating robust assumptions of multivariate discriminant analysis that are multivariate normality of the independent variables and equality of variance-covariance matrices in each of the groups. On the contrary, cluster analysis alleviates this assumption like neural networks. We propose a new approach to classification problems by combining the cluster analysis with neural networks. The resulting predictions of the composite model are more accurate than each individual technique.

  • PDF

다변량 모형을 이용한 보증데이터 분석 방법 연구 (A Study on Analysis Method of Warranty Data Using Multivariate Model)

  • 김종걸;성기우
    • 대한안전경영과학회지
    • /
    • 제17권2호
    • /
    • pp.241-247
    • /
    • 2015
  • The purpose of the warranty data analysis can be classified into two categories. Two goals is a failure cause analysis and life prediction analysis. In this paper first, we applied multivariate analysis method that can be estimated in consideration of various factors on the failure cause warranty data. In particular, we apply the Tree model and Cox model. The advantage of the Tree is easy to interpret this result as compared to other models. In addition Cox model can quantitatively express the risk. Second, this paper proposed a multivariate life prediction model (AFT) considering a variety of factors. By applying the actual warranty data confirmed the usability.

Matrix Formation in Univariate and Multivariate General Linear Models

  • Arwa A. Alkhalaf
    • International Journal of Computer Science & Network Security
    • /
    • 제24권4호
    • /
    • pp.44-50
    • /
    • 2024
  • This paper offers an overview of matrix formation and calculation techniques within the framework of General Linear Models (GLMs). It takes a sequential approach, beginning with a detailed exploration of matrix formation and calculation methods in regression analysis and univariate analysis of variance (ANOVA). Subsequently, it extends the discussion to cover multivariate analysis of variance (MANOVA). The primary objective of this study was to provide a clear and accessible explanation of the underlying matrices that play a crucial role in GLMs. Through linking, essentially different statistical methods, by fundamental principles and algebraic foundations that underpin the GLM estimation. Insights presented here aim to assist researchers, statisticians, and data analysts in enhancing their understanding of GLMs and their practical implementation in diverse research domains. This paper contributes to a better comprehension of the matrix-based techniques that can be extended to GLMs.

Applications of response dimension reduction in large p-small n problems

  • Minjee Kim;Jae Keun Yoo
    • Communications for Statistical Applications and Methods
    • /
    • 제31권2호
    • /
    • pp.191-202
    • /
    • 2024
  • The goal of this paper is to show how multivariate regression analysis with high-dimensional responses is facilitated by the response dimension reduction. Multivariate regression, characterized by multi-dimensional response variables, is increasingly prevalent across diverse fields such as repeated measures, longitudinal studies, and functional data analysis. One of the key challenges in analyzing such data is managing the response dimensions, which can complicate the analysis due to an exponential increase in the number of parameters. Although response dimension reduction methods are developed, there is no practically useful illustration for various types of data such as so-called large p-small n data. This paper aims to fill this gap by showcasing how response dimension reduction can enhance the analysis of high-dimensional response data, thereby providing significant assistance to statistical practitioners and contributing to advancements in multiple scientific domains.

부실기업예측모형의 판별력 비교 (A Comparison of the Discrimination of Business Failure Prediction Models)

  • 최태성;김형기;김성호
    • 한국경영과학회지
    • /
    • 제27권2호
    • /
    • pp.1-13
    • /
    • 2002
  • In this paper, we compares the business failure prediction accuracy among Linear Programming Discriminant Analysis(LPDA) model, Multivariate Discriminant Analysis (MDA) model and logit analysis model. The Data for 417 companies analyzed were gathered from KIS-FAS Published by Korea Information Service in 1999. The result of comparison for four time horizons shows that LPDA Is advantageous in prediction accuracy over the other two models when over all tilt ratio and business failure accuracy are considered simultaneously.

주성분을 이용한 다변량 고빈도 실현 변동성의 주기 선택 (Choice of frequency via principal component in high-frequency multivariate volatility models)

  • 진민경;윤재은;황선영
    • 응용통계연구
    • /
    • 제30권5호
    • /
    • pp.747-757
    • /
    • 2017
  • 본 논문은 다변량 실현 변동성 계산에서 주기 선택 방안에 대해 연구하고 있다. 고빈도(high frequency) 시계열 자료에 기초한 일간 변동성인 실현변동성을 계산하고 차원 축소 방법인 주성분을 도입하였다. Cholesky 모형을 포함한 다양한 다변량 변동성모형을 주성분을 통해 비교하였으며 KOSPI/삼성전자/현대차 고빈도 수익률 자료를 이용하여 예시하였다.