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Abstract
This article explores the analysis of longitudinal surveys in which same units are investigated on several

occasions. Multivariate exponential ratio type estimator has been proposed for the estimation of the finite pop-
ulation median at the current occasion in two occasion longitudinal surveys. Information on several additional
auxiliary variables, which are stable over time and readily available on both the occasions, has been utilized.
Properties of the proposed multivariate estimator, including the optimum replacement strategy, are presented.
The proposed multivariate estimator is compared with the sample median estimator when there is no matching
from a previous occasion and with the exponential ratio type estimator in successive sampling when informa-
tion is available on only one additional auxiliary variable. The merits of the proposed estimator are justified by
empirical interpretations and validated by a simulation study with the help of some natural populations.

Keywords: longitudinal surveys, exponential ratio type estimators, population median, skewed
distribution, successive sampling, bias, mean squared error, optimum replacement strategy, multi-
auxiliary information

1. Introduction

Longitudinal surveys over an extensive time are increasingly important because a single time survey
and analysis is inadequate to understand changes in the dynamics of economic and social process.
Longitudinal surveys in which the sampling is done on successive occasions (over years or seasons or
months) according to a specific rule, with partial replacement of units, are called successive (rotation)
sampling. Some of examples in this area of study are in many countries, the monthly labour-force sur-
veys conducted to estimate the number of employed and the rate of unemployment, monthly surveys
in which the data on price of goods are collected to determine a consumer price index, and political
opinion surveys conducted at regular intervals to measure voter preferences.

The problem of sampling on two successive occasions was first considered by Jessen (1942) that
has been subsequently extended by Arnab and Okafor (1992), Eckler (1955), Gordon (1983), Narain
(1953), Patterson (1950), Priyanka et al. (2015), Singh and Priyanka (2008a), Singh et al. (2013), and
others. All the above efforts were devoted to the estimation of population mean or variance on two or
more occasion successive sampling. The median can be used as a measure of central location when a
distribution concerned with a longitudinal survey is skewed, when end-values are unknown, or when
one requires reduced importance to be attached to outliers because they may be measurement errors.

A few researchers such as Martı́nez-Miranda et al. (2005), Rueda et al. (2008), Singh et al. (2007)
have proposed estimators for the population median in successive sampling. Singh and Priyanka
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(2008b) proposed an estimator to estimate population median in two-occasion successive sampling
assuming that a guess value of the population median is known. In the above papers, related to the
study of median, have assumed that the density functions appearing in the results are known. How-
ever, a population parameter is not generally known. Priyanka and Mittal (2014, 2016) subsequently
proposed estimators for population median in successive sampling using information on the additional
stable auxiliary variable available on both the occasions. In addition, they also estimated unknown
density functions using the method of the generalized nearest neighbor density estimator related to
the kernel estimator.

It is theoretically established that the linear regression estimator is more efficient than the ratio es-
timator except when the regression line of the study variable on the auxiliary variable passes through
the neighborhood of the origin; in this case the efficiencies of these estimators are almost equal. Also,
the ratio estimator does not perform as well as the linear regression estimator in many practical sit-
uations where the regression line does not pass through the neighborhood of the origin. The linear
regression estimator always performs adequately; however, it includes a population parameter in its
structure (which in case of its practical implementation) that has to be replaced by its sample esti-
mate as the population regression coefficient is not always known. One may also consider using a
difference type estimator that requires an extra constant obtained by minimization with extra cost and
expertise. It has also been observed that an exponential ratio type estimator works efficiently for a low
or moderate correlation of the study and auxiliary variable (Priyanka et al., 2015).

Sometimes, information on several auxiliary variables may be readily available or may be made
easily available by diverting a small amount of available funding for the survey. For example, to
study the number (or rate) of abortions, many factors like availability of medical facilities, household
income, and education level can be taken as additional auxiliary information. Likewise, one may be
interested in estimating military expenditures for Asian countries, then the gross national product,
average exports, and average imports may be considered as additional auxiliary information for each
country.

The exponential ratio type estimator can now be considered a better alternative. Therefore inspired
with advantageous property of exponential ratio type estimators and following Olkin (1958) technique
of weighted ratio-type estimator, the objective of the present study is to develop a more effective and
relevant estimator using exponential ratio type estimators for the population median on the current oc-
casion in two occasion successive sampling embedding information on p-additional auxiliary variates
(p ≥ 1), which are stable over time. The properties of the proposed estimator are discussed. Optimum
replacement strategies are elaborated. The proposed estimator is compared with the estimator when
information on single auxiliary variable (p = 1) is available on both occasions and with the sample
median estimator when there is no matching from the previous occasion. The dominance of the pro-
posed estimator is justified by empirical interpretations. The results are also validated by the means
of simulation studies.

2. Sample structure and notations

Let U = (U1,U2, . . . ,UN) be the finite population of N units, which has been sampled over two
occasions. It is assumed that size of the population remains unchanged but values of units change
over two occasions. Let the character under study be denoted by x(y) on the first (second) occasions
respectively. It is assumed that information on p-additional auxiliary variables z1, z2, . . . , zp, whose
population median are known and stable over occasions, are readily available on both occasions and
positively correlated to x and y respectively. A simple random sample (without replacement) of n
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units is taken on the first occasion. A random subsample of m = nλ units is retained for use on
the second occasion. Now at the current occasion a simple random sample (without replacement) of
u = (n − m) = nµ units is drawn fresh from the remaining (N − n) units of the population so that the
sample size on the second occasion is also n. Let the fractions of fresh and matched samples at the
second (current) occasion be µ and λ (µ + λ = 1), respectively, where 0 ≤ µ, λ ≤ 1. The following
notations are considered for the further use:

• Mi: Population median of the variable i; i ∈
{
x, y, z1, z2, . . . , zp

}
.

• M̂i(u): Sample median of variable i; i ∈
{
y, z1, z2, . . . , zp

}
based on the sample size u.

• M̂i(m): Sample median of variable i; i ∈
{
x, y, z1, z2, . . . , zp

}
based on the sample size m.

• M̂i(n): Sample median of variable i; i ∈
{
x, y, z1, z2, . . . , zp

}
based on the sample size n.

• fi(Mi): The marginal densities of variable i; i ∈
{
x, y, z1, z2, . . . , zp

}
.

3. Proposed estimator T

To estimate the population median M̂y on the current occasion utilizing p-additional auxiliary infor-
mation, which is stable over time and readily available on both successive occasions, a multivariate
weighted estimator Tu based on sample of size u = nµ drawn fresh on the current occasion is proposed
as

Tu =W′
uTexp(u), (3.1)

where Wu is a column vector of p-weights given by Wu = [wu1 wu2 · · · wup ]′, and

Texp(u) =


T (1, u)
T (2, u)

...
T (p, u)

 ,
where T (i, u) = M̂y exp{(Mzi − M̂zi (u))/(Mzi + M̂zi (u))} for i = 1, 2, 3, . . . , p such that 1′Wu = 1, where
1 is a column vector of order p.

The second estimator Tm is also proposed as a weighted multivariate chain type ratio to exponential
ratio estimator based on sample size m = nλ common to both occasions and given by

Tm =W′
mTexp(m, n), (3.2)

where Wm is a column vector of p-weights as Wm = [wm1 wm2 · · · wmp ]′. and

Texp(m, n) =


T (1,m, n)
T (2,m, n)

...
T (p,m, n)

 ,
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where T (i,m, n) = {(M̂y
∗(i,m))/(M̂x

∗(i,m))} M̂x
∗(i, n), where M̂y

∗(i,m) = M̂y(m) exp{(Mzi − M̂zi (m))/
(Mzi + M̂zi (m))}, M̂x

∗(i,m) = M̂x(m) exp{(Mzi − M̂zi (m))/(Mzi + M̂zi (m))} and M̂x
∗(i, n) = M̂x(n) exp

{(Mzi − M̂zi (n))/(Mzi + M̂zi (n))}, for i = 1, 2, 3, . . . , p. Such that 1′Wm = 1, where 1 is a column
vector of order p.

The optimum weights Wu and Wm in Tu and Tm are selected by minimizing their mean squared
errors respectively.

Considering the convex linear combination of the two estimators Tu and Tm, we have the final
estimator of the population median My on the current occasion as

T = φTu + (1 − φ) Tm, (3.3)

where φ (0 ≤ φ ≤ 1) is an unknown constant to be determined so as to minimize the mean squared
error of the estimator T .

Remark 1. The estimator Tu is suitable to estimate the median on each occasion, which implies
that more belief on φ could be shown by choosing φ as 1 (or close to 1); however, to estimate the
change from occasion to occasion, the estimator Tm could be more useful so φ might be chosen as
0 (or close to 0). For asserting both problems simultaneously, the suitable (optimum) choice of φ is
desired.

4. Properties of the proposed estimator T

4.1. Assumptions

The properties of the proposed estimators T are derived under the following assumptions:

1) Population size is sufficiently large (i.e., N → ∞), therefore finite population corrections are
ignored.

2) As N → ∞, the distribution of the bivariate variable (a, b), where a and b ∈
{
x, y, z1, z2, . . . , zp

}
and a , b approaches a continuous distribution with marginal densities fa(·) and fb(·), respectively
(Kuk and Mak, 1989).

3) The marginal densities fx(·), fy(·), fz1 (·), fz2 (·), . . ., fzp are positive.

4) The sample medians M̂x(n), M̂zi (n), M̂x(m), M̂y(m), M̂zi (m), M̂y(u), and M̂zi (u) for i = 1, 2, 3, . . . , p;
are consistent and asymptotically normal (Gross, 1980).

5) Following Kuk and Mak (1989), let Pab be the proportion of elements in the population such that
a ≤ M̂a and b ≤ M̂b where a and b ∈

{
x, y, z1, z2, . . . , zp

}
, and a , b.

6) The following large sample approximations are assumed:

M̂y(u) = My(1 + e0), M̂y(m) = My(1 + e1), M̂x(m) = Mx(1 + e2), M̂x(n) = Mx(1 + e3),

M̂zi (u) = Mzi (1 + e4i), M̂zi (m) = Mzi (1 + e5i), M̂zi (n) = Mzi (1 + e6i)

such that |ek | < 1 and |eki| < 1 and ∀ k = 0, 1, 2, . . . , 6 and i = 1, 2, 3, . . . , p.

The values of various related expectations can be seen in Singh (2003).
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4.2. Bias and mean squared error of the estimator T

The estimators Tu and Tm are weighted multivariate exponential ratio and chain type ratio to expo-
nential ratio type in nature, respectively. Hence they are biased for population median My. Therefore,
the final estimator T defined in equation (3.3) is also a biased estimator of My. Bias B(·) and mean
squared error M(·) of the proposed estimator have been derived to the first order of approximations
that provide the following theorems:

Theorem 1. The bias of the estimator T to the first order of approximation is obtained as

B(T ) = φB (Tu) + (1 − φ)B(Tm), (4.1)

B(Tu) =
1
u

W′
uBu, (4.2)

B(Tm) =W′
m

(
1
m

Bm1 +
1
n

Bm2

)
, (4.3)

where Bu = (B1(u), B2(u), . . . , Bp(u))′, Bm2 = (Bm21, Bm22, . . . , Bm2p)′

Bi(u) =

3
[
fzi

(
Mzi

)]−2 My

32M2
zi

−

(
4Pyzi − 1

) [
fy

(
My

)]−1 [
fzi

(
Mzi

)]−1

8Mzi

 ,
Bm1 =


[
fx (Mx)

]−2 My

4M2
x

−

(
4Pxy − 1

) [
fx (Mx)

]−1
[
fy

(
My

)]−1

4Mx

 ,
where

Bm2i =


(
4Pxy − 1

) [
fx (Mx)

]−1
[
fy

(
My

)]−1

4Mx
−

[
3 fzi

(
Mzi

)]−2 My

32M2
zi

−
[
fx (Mx)

]−2 My

4M2
x

−

(
4Pyzi − 1

) [
fy

(
My

)]−1 [
fzi

(
Mzi

)]−1

8Mzi


for i = 1, 2, 3, . . . , p.

Theorem 2. Mean squared error of the estimator T to the first order of approximations is obtained
as

M(T ) = φ2M(Tu) + (1 − φ)2M(Tm) + 2φ(1 − φ) cov (Tu,Tm) , (4.4)
M(Tu) =W′

u DuWu, (4.5)
M(Tm) = (B)W′

m EWm +W′
m DmWm, (4.6)

where Wu = [wu1 wu2 · · ·wup ]′, Wm = [wm1 wm2 · · ·wmp ]′, E is a unit matrix of order p × p,
Du = (1/u − 1/N)Du∗ , Dm = (1/n − 1/N)Dm∗ , where

Du∗ =


du11 du12 . . . du1p

du21 du22 . . . du2p
...

...
. . .

...
dup1 dup2 . . . dupp


p×p

and Dm∗ =


dm11 dm12 . . . dm1p

dm21 dm22 . . . dm2p
...

...
. . .

...
dmp1 dmp2 . . . dmpp


p×p

,
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where B = (1/m − 1/N)B1,

B1 =


[
fx (Mx)

]−2 M2
y

4M2
x

−

(
4Pxy − 1

) [
fx (Mx)

]−1
[
fy

(
My

)]−1
My

2Mx
+

[
fy

(
My

)]−2

4

 ,
duii =


[
fy

(
My

)]−2

4
−

(
4Pyzi − 1

) [
fy

(
My

)]−1 [
fzi

(
Mzi

)]−1 My

4Mzi

+

[
fzi

(
Mzi

)]−2 M2
y

16M2
zi

 ,
dui j =


[
fy

(
My

)]−2

4
−

(
4Pyzi−1

) [
fy

(
My

)]−1 [
fzi

(
Mzi

)]−1 My

8Mzi

−

(
4Pyz j−1

) [
fy

(
My

)]−1 [
fz j

(
Mz j

)]−1
My

8Mz j

+

(
4Pziz j − 1

) [
fzi

(
Mzi

)]−1
[
fz j

(
Mz j

)]−1
M2

y

16Mzi Mz j

 ,
dmii =


[
fzi

(
Mzi

)]−2 M2
y

16M2
zi

+

(
4Pxy − 1

) [
fx (Mx)

]−1
[
fy

(
My

)]−1
My

2Mx
−

[
fx (Mx)

]−2 M2
y

4M2
x

−

(
4Pyzi − 1

) [
fy

(
My

)]−1 [
fzi

(
Mzi

)]−1 My

4Mzi

 ,
dmi j =

−
[
fx(Mx)

]−2M2
y

4M2
x

+

(
4Pxy−1

) [
fx(Mx)

]−1
[
fy
(
My

)]−1
My

2Mx
−

(
4Pyzi − 1

) [
fy

(
My

)]−1 [
fzi

(
Mzi

)]−1 My

8Mzi

−

(
4Pyz j − 1

) [
fy

(
My

)]−1 [
fz j

(
Mz j

)]−1
My

8Mz j

+

(
4Pziz j − 1

) [
fzi

(
Mzi

)]−1
[
fz j

(
Mz j

)]−1
M2

y

16Mzi Mz j

 ,
∀ i , j = 1, 2, 3, . . . , p and cov(Tu,Tm) = 0 as they are based on two independent samples.

Remark 2. The mean squared errors of the estimators T in equation (4.4) depend on the population
parameters Pxy, Pyzi , Pxzi , Pziz j , fx(Mx), fy(My), and fzi (Mzi ); (i , j = 1, 2, 3, . . . , p). The properties
of the proposed estimators can be easily studied if the parameters are known. Otherwise (which is the
most common in practice) the unknown population parameters are replaced by the sample estimates.
The population proportions Pxy, Pyzi , Pxzi , and Pziz j can be replaced by the sample estimate P̂xy, P̂yzi ,
P̂xzi , and P̂ziz j and the marginal densities fy(My), fx(Mx), and fzi (Mzi ); (i , j = 1, 2, 3, . . . , p) can
be substituted by their kernel estimator or nearest neighbor density estimator or generalized nearest
neighbor density estimator related to the kernel estimator (Silverman, 1986). Here, the marginal densi-
ties fy(My), fx(Mx) and fzi (Mzi ) are replaced by f̂y(M̂y(m)), f̂x(M̂x(n)), and f̂zi (M̂zi (n)); i = 1, 2, . . . , p,
respectively, which are obtained by the method of generalized nearest neighbor density estimator
related to the kernel estimator.

To estimate fy(My), fx(Mx), and fzi (Mzi ); i = 1, 2, . . . , p by generalized nearest neighbor density
estimator related to the kernel estimator, the following procedure has been adopted:

Choose an integer h ≈ n1/2 and define the distance δ(x1, x2) between two points on the line to be
|x1 − x2|. For M̂x(n), define δ1(M̂x(n)) ≤ δ2(M̂x(n)) ≤ · · · ≤ δn(M̂x(n)) to be the distances, arranged
in ascending order, from M̂x(n) to the points of the sample. The generalized nearest neighbor density
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estimate is defined by

f̂
(
M̂x (n)

)
=

1

nδh

(
M̂x (n)

) n∑
i=1

K

 M̂x (n) − xi

δh

(
M̂x (n)

)  ,
where the kernel function K, satisfies the condition

∫ ∞
−∞ K(x)dx = 1. Here, the kernel function is

chosen as Gaussian Kernel given by K(x) = (1/2π)e−[(1/2)x2]. The estimate of fy(My) and fzi (Mzi );
i = 1, 2, . . . , p can be obtained by the above explained procedure in similar manner.

5. Choice of optimal weights

To find the optimum weight vector Wu = [wu1 wu2 · · · wup ]′, the mean squared error M(Tu) given in
equation (4.5) is the minimized subject to the condition 1′Wu = 1 using the method of Lagrange’s
multiplier explained as:

To find the extrema using Lagrange’s multiplier technique, we define Q1 as

Q1 =W′
u DuWu − λu

(
1′Wu − 1

)
, (5.1)

where 1 is a unit column vector of order p and λuis the Lagrangian multiplier.
Now, by differentiating equation (5.1) partially with respect to Wu and equating it to zero we have

∂Q1

∂Wu
=

∂

∂Wu

[
W′

u DuWu − λu(1′Wu − 1)
]
= 0.

This implies that, 2DuWu − λu1 = 0, which yields

Wu =
λu

2
D−1

u 1. (5.2)

Now pre-multiplying equation (5.2) by 1′, we get

λu

2
=

1
1′K−1

u 1
. (5.3)

Thus, using equation (5.3) in equation (5.2), we obtain the optimal weight vector as

Wuopt. =
D−1

u

1′D−1
u 1

. (5.4)

In similar manners, the optimal of the weight Wm = [wm1 wm2 · · · wmp ]′ is obtained by minimizing
M(Tm) subject to the constraint 1′Wm = 1 using the method of Lagrange’s multiplier, for this we
define

Q2 = (B)W′
mE Wm +W′

m DmWm − λm(1′Wm − 1),

where λm is the Lagrangian multiplier.
Now, differentiating Q2 with respect to Wm and equating to 0, we get

Wmopt. =
D−1

m

1′D−1
m 1

. (5.5)
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Then substituting the optimum values of Wu and Wm in equations (4.5) and (4.6), respectively, the
optimum mean squared errors of the estimators are obtained as:

M(Tu)opt. =

(
1
u
− 1

N

)
1

1′D−1
u∗ 1

, (5.6)

M(Tm)opt. =

(
1
m
− 1

N

)
B1 +

(
1
n
− 1

N

)
1

1′D−1
m∗1

. (5.7)

�

6. Minimum mean squared errors of the proposed estimator T

The mean squared error of the estimator given in equation (4.4) is a function of unknown constants φ,
therefore, it is minimized with respect to φ so that the optimum values of φ is obtained as

φopt. =
M(Tm)opt.

M(Tu)opt. + M(Tm)opt.
. (6.1)

Now substituting the value of φopt. in equation (4.4), we obtain the optimum mean squared error of
the estimator T as

M(T )∗opt. =
M(Tu)opt..M(Tm)opt.

M(Tu)opt.+M(Tm)opt.
. (6.2)

Further, substituting the optimum values of the mean squared error of the estimators Tu and Tm ob-
tained in equations (5.6) and (5.7) in equations (6.1) and (6.2), respectively, the simplified values φopt.
and M(T )∗opt. is obtained as

φopt. =
µ
[
µC−(B1+C)

][
µ2C − µ(B1+C − A)−A

] , (6.3)

M(T )∗opt. =
1
n

[
µD1−D2

][
µ2C − µD3−A

] , (6.4)

where A = 1/1′K−1
u∗ 1, C = 1/1′K−1

m∗1, D1 = AC, D2 = AB1 + AC, D3= B1+C − A,

B1 =


[
fy

(
My

)]−2

4
+

[
fx (Mx)

]−2 M2
y

4M2
x

−

(
4Pxy − 1

) [
fx (Mx)

]−1
[
fy

(
My

)]−1
My

2Mx


and µ is the fraction of the sample drawn fresh at the current occasion.

7. Optimum replacement strategy for the estimator T

The key design parameter affecting the estimates of change is the overlap between successive samples.
Maintaining high overlap between the repeats of a survey is operationally convenient since many
sampled units have been located and have some experience in the survey. Hence to decide about the
optimum value of µ (fractions of samples to be drawn fresh on current occasion) so that My may be
estimated with maximum precision and minimum cost, we minimize the mean squared error M(T )∗opt.
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in equation (6.4) with respect to µ. The optimum value of µ so obtained is one of the two roots given
by

µ̂ =
G2 ±

√
G2

2−G1G3

G1
, (7.1)

where G1 = CD1, G2 = CD2, and G3 = AD1 + D2D3.
The real value of µ̂ exist, iff G2

2 − G1G3 ≥ 0. For any situation, which satisfies this condition,
two real values of µ̂ may be possible; hence, we choose a value of µ̂ such that 0 ≤ µ̂ ≤ 1. All other
values of µ̂ are inadmissible. If both the real values of µ̂ are admissible, the lowest one will be the
best choice because it reduces the total cost of the survey. Substituting the admissible value of µ̂ say
µ0 from equation (7.1) in to the equation (6.4), we get the optimum value of the mean squared error
of the estimator T with respect to φ as well as µ which, is given as

M(T )∗∗opt. =
1
n

[
µ0D1−D2

][
µ2

0C − µ0D3−A
] . (7.2)

8. Efficiency with increased number of auxiliary variables

Increasing the number of auxiliary variables typically increases the precision of the estimates. This
section verifies this property for the proposed estimator as under: Let T|p and T|q be two proposed
estimators based on p and q auxiliary variables, respectively such that p < q, then M(Tp) ≥ M(Tq),
i.e.,

M(Tp)−M(Tq) ≥ 0, (8.1)

1
n

[
µApCp − Ap(B +Cp)

][
µ2Cp−µ(B +Cp+Ap) − Ap

]−1
n

[
µAqCq−Aq(B +Cq)

][
µ2Cq−µ(B +Cq+Aq) − Aq

] ≥ 0.

On simplification, we get

(
Ap − Aq

) (µ − 1)2

µCpCq+
ApAq

(
Cp−Cq

)(
Ap−Aq

) −µB
((

Cp−Cq

)
(µ − 1)−B

) ≥ 0.

This reduces to the condition

(Ap−Aq) ≥ 0. (8.2)

From Section 6, we get

1
1′D−1

p 1
− 1

1′D−1
q 1
≥ 0, 1′D−1

q 1 ≥ 1′D−1
p 1.

Following Rao (2002), the matrix Dq can be partitioned and can be written as

Dq =

(
Dp F
F′ G

)
,
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where F, F′, and G are matrices deduced from Dq such that their order never exceeds q−p and always
greater than or equal to 1. Then,

D−1
q =

[
D−1

p + HJH′ −HJ
−JH′ J

]
, (8.3)

where J = (G − F′D−1
p F)−1 and H = D−1

p F (Olkin, 1958; Rao, 2002)
Now rewriting 1′D−1

q 1 by putting the value of D−1
q from equation (8.3), we get

1′D−1
q 1 =

[
1p 1q−p

]′ [D−1
p + HJH′ −HJ
−JH′ J

] [
1p

1q−p

]
=

(
1′p

(
D−1

p + HJH′
)
− 1′q−p JH′ − 1′pHJ+1′q−p J

) [ 1p

1q−p

]
= 1′p

(
D−1

p + HJH′
)

1p−1′q−p JH′1p−1′pHJ1q−p+1′q−p J1q−p

implies

1′D−1
q 1−1′p

(
D−1

p

)
1p = 1′p

(
HJH′

)
1p−1′q−p JH′1p−1′pHJ1q−p+1′q−p J1q−p,

1′D−1
q 1−1′p

(
D−1

p

)
1p =

[
1p 1q−p

]′ [HJH′ −HJ
−JH′ J

] [
1p

1q−p

]
,

1′D−1
q 1−1′p

(
D−1

p

)
1p = 1′

[
H
−I

]
J
[
H −I

]
1 ≥ 0.

The latter follows since J is positive definite so that R′JR ≥ 0 for all R, where R =
(
H −I

)
1.

Hence, this leads to the result that utilizing more auxiliary variables provides more efficient esti-
mates in terms of mean squared error for the proposed estimator.

9. Efficiency comparison

To evaluate the performance of the proposed estimator, the estimator T at optimum conditions is
compared to sample median estimator M̂y(n), when there is no matching from the previous occasion.
For empirical investigations the proposed estimator has been considered for the case p = 1 and p = 2.
Since, M̂y(n) is unbiased for population median, so the variance of M̂y(n) is given as

V
(
M̂y(n)

)
=

1
n

[ fy(My)]−2

4
. (9.1)

The percent relative efficiencies ET|p=1 and ET|p=2 of the estimator T (under their respective optimum
conditions) with respect to M̂y(n) is given by

ET|p=1 =
V

(
M̂y (n)

)
M

(
T|p=1

)∗∗
opt.

× 100 and ET|p=2 =
V

(
M̂y (n)

)
M

(
T|p=2

)∗∗
opt.

× 100 (9.2)
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Figure 1: Rate of abortion versus different U.S. states in 2007.

10. Numerical illustrations

To justify the practical use of the proposed multivariate estimator T , a completely known population
has been considered with illustrations that suppose two auxiliary variables (i.e., p = 2) are available.
The real population has been taken from the Statistical Abstracts of the United States.

The population comprise of N = 40 states of the United States. Let yi represent the rate of
abortions during 2008 in the ith state of U.S., xi be the rate of abortions during 2007 in the ith state of
U. S., z1i denote the rate of abortions in 2005 in the ith state of U.S. and z2i denote the rate of abortions
during 2004 in the ith state of U.S. Data are presented in Figure 1.

The graph in Figure 1 shows that the rate of abortions are almost skewed towards the right. One
reason for the skewness may be the distribution of population in different states. It is believed that
states having a larger population are expected to have larger rate of abortions. Thus skewness of data
indicates that the use of median may be a good measure for central location than the mean in this
situation.

For the considered population, the optimum value of µ defined in equation (7.1) and percent
relative efficiencies ET|p=1 and ET|p=1 defined in equation (9.2) of T (for p = 1 and p = 2 under
their optimal conditions) with respect to M̂y(n) have been computed (Table 1). To validate the above
empirical results, Monte Carlo simulation was performed for the considered population.

10.1. Simulation algorithm

1) Choose 5,000 samples of size n = 15 using simple random sampling without replacement on first
occasion for both the study and auxiliary variables.

2) Calculate sample median M̂x|k(n), M̂z1 |k(n), and M̂z2 |k(n) for k = 1, 2, . . . , 5000.

3) Retain m = 13 units out of each n = 15 sample units of the study and auxiliary variables at the first
occasion.

4) Calculate sample median M̂x|k(m), M̂y|k(m), M̂z1 |k(m), and M̂z2 |k(m) for k = 1, 2, . . . , 5000.

5) Select u = 2 units using simple random sampling without replacement from N − n = 25 units of
the population for study and auxiliary variables at the second occasion.
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Table 1: Comparison of the proposed estimators T |p=1 and T |p=2 (at respective optimum conditions) with respect
to the estimator M̂y(n)

Optimum value of µ0 Percent relative efficiency ET|p=i

p = 1 0.5478 171.16
p = 2 0.5229 199.54

Table 2: Estimated values of population median using the proposed estimators T |p=1 and T |p=2 at optimum
conditions

Actual value n = 10 n = 15 n = 20
My = 15.50 Estimated value RSE Estimated value RSE Estimated value RSE

T|p=1 14.83 8.57% 15.10 7.85% 16.16 6.95%
T|p=2 15.01 8.47% 15.47 7.49% 15.98 6.83%

RSE = relative standard error of the estimator.

6) Calculate sample median M̂y|k(u), M̂z1 |k(u), and M̂z2 |k(u) for k = 1, 2, . . . , 5000.

7) Iterate the parameter φ from 0.1 to 0.9 with a step size of 0.1.

8) Calculate the percent relative efficiencies of the proposed estimator T with the case p = 1 and
p = 2 (i.e., T|p=1 and T|p=2 ) with respect to the sample median estimator M̂y(n) as:

E1(sim) =

∑5000
k=1

[
M̂y|k(n) − My

]2

∑5000
k=1

[
Tp=1|k − My

]2 × 100 and E2(sim) =

∑5000
k=1

[
M̂y|k(n) − My

]2

∑5000
k=1

[
Tp=2|k − My

]2 × 100.

For better analysis, the above simulation experiments were repeated for different choices of µ. For
convenience the different choices of µ are considered as different sets for the considered population
which is:

Set I : n = 15, µ = 0.10, (m = 13, u = 2), Set II : n = 15, µ = 0.20, (m = 12, u = 3),
Set III : n = 15, µ = 0.30, (m = 10, u = 5), Set IV : n = 15, µ = 0.40, (m = 9, u = 6).

Table 2 presents the simulation results.

11. Mutual comparison of the estimators T|p=1 and T|p=2

The performances of the estimator T|p=1 and T|p=2 have been elaborated empirically as well as through
simulation studies in Section 10, with the results presented in Tables 1–3. The mutual comparison of
the estimators for the cases when p = 1 and p = 2 has been elaborated graphically and presented in
Figure 2.

12. Interpretation of results

1) It is clear from Table 1 that optimum values of µ0 (for p = 1 and p = 2) exist for the considered
population and µ0 (p = 2) < µ0 (p = 1) . This indicates that less fraction of a fresh sample is
required when more numbers of auxiliary variables are used. Hence, the total cost of the survey
will also be reduced when more numbers of additional auxiliary variables are considered.
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Table 3: Monte Carlo simulation results when the proposed estimators T |p=1 and T |p=2 are compared to M̂y(n)

φ
Set

I II III IV

0.1 E1(sim) 307.79 536.79 316.69 422.16
E2(sim) 528.09 750.31 503.03 572.87

0.2 E1(sim) 304.69 523.28 352.51 452.88
E2(sim) 538.70 742.33 545.61 624.11

0.3 E1(sim) 294.64 505.08 370.03 460.89
E2(sim) 521.40 727.42 556.61 621.96

0.4 E1(sim) 277.73 470.01 366.51 471.37
E2(sim) 480.55 669.88 521.47 618.86

0.5 E1(sim) 260.27 426.75 355.05 459.98
E2(sim) 431.18 588.43 479.63 582.28

0.6 E1(sim) 241.34 381.47 328.24 443.04
E2(sim) 379.41 506.80 418.77 542.37

0.7 E1(sim) 222.24 339.33 301.81 413.75
E2(sim) 329.89 433.81 366.84 488.27

0.8 E1(sim) 204.09 298.86 272.14 378.01
E2(sim) 285.40 366.39 316.65 431.25

0.9 E1(sim) 184.42 263.30 239.41 337.58
E2(sim) 243.33 312.30 268.82 373.59

Figure 2: Mutual comparison of the proposed estimators T |p=1 and T |p=2 when compared with estimator M̂y(n).

2) Table 1 also explains that the value of ET |p=2 > ET |p=1, this also indicates that efficiency is signifi-
cantly increased when more numbers of auxiliary variates are considered, which also resembles in
accordance with the theory.

3) In Table 2, the estimates of population median have been computed using the proposed estimator
T for p = 1 and p = 2 at their respective optimum conditions. We see that the estimates for the
population median are quite near the original value of the population median.

4) In Table 2, the relative standard error of the estimators (RSE) has also been computed; in addition,
it is observed that RSE is reduced as sample size is increased. RSE also decreases when more
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numbers of auxiliary variables are used. The value of RSE is considerably low and this indicates
that the estimates are quite reliable.

5) From simulation study in Table 3 and from Figure 2, we observe that the value of E1(sim) and
E2(sim) exists for all choices of φ and for all different sets. As φ increases the value of E1(sim) and
E2(sim) decreases for all sets, which indicates that the efficiency of the estimator T gets reduced
if more weight is given to the estimator defined on current occasion and is in accordance with the
results of Shukhatme et al. (1984). The big difference in the two lines in Figure 2 shows that
the performance of estimator drastically enhances when more numbers of auxiliary variables are
considered.

6) From Table 3 we also observe that for set II, the estimators T|p=1 and T|p=2 prove extensively better
than the sample median estimator. No fixed pattern is observed in the efficiencies of the proposed
estimators if the value of fraction of fresh sample to be drawn on current occasion increases.

13. Conclusion

From the preceding interpretations, it may be concluded that the use of multivariate exponential ratio
type estimators for the estimation of a population median at the current occasion in two occasions;
therefore, successive sampling is highly appreciable as vindicated through empirical and simulation
results. The mutual comparison of the proposed estimators indicates that the estimators utilizing more
auxiliary variables perform better in terms of cost and precision. Hence, the proposed multivariate es-
timator T may be recommended for its practical use in longitudinal surveys to estimate the population
median by survey practitioners.
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