• Title/Summary/Keyword: multivariable control

Search Result 276, Processing Time 0.028 seconds

A Design on Robust Two-Degree-of-Freedom Multivariable Boiler-Turbine System (강인한 2자유도 다변수 보일러-터빈 시스템의 설계)

  • Hwang, C.S.;Kim, D.W.;Jung, H.S.;Lee, D.Y.;Cho, K.Y.;Nam, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.670-672
    • /
    • 1995
  • This paper deals with the robust two-degree-of-freedom multivariable control system using $H_{2}/H{\infty}$optimization method which can achieve the robust stability and the robust performance, simultaneously. The feedback controller can obtain the robust stability property. The feedforward controller can obtain the robust performance property under modelling error. The robust two-degree-of-freedom multivariable control system is applied to the nonlinear multivariable boiler-turbine system. The validity of the proposed method is verified though being compared with LQG/LTR design method.

  • PDF

Multivariable Control of Cold-Rolling Mills with Roll Eccentricity (롤편심을 포함한 냉간압연 시스템의 다변수 제어)

  • Kim, Jong-Sik;Kim, Seung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.502-510
    • /
    • 1997
  • A disturbance rejection controller using eccentricity filtering and LQ control techniques is proposed to alleviate the effecto of major roll eccentricity in multivariable cold-rolling processes. Fundamental problems in multivariable cold-rolling processes such as process time delay inherent in exit thickness measurement and non-stationary characteristics of roll eccentricity signals can be overcome by the proposed control method. The filtered instantaneous estimate of roll eccentricity may be exploited to improve instantaneous estimate of the exit thickness variation based on roll force and roll gap measurements, and a feedforward compensator is augmented as a reference for a gaugemeter thickness estimator. LQ feedback controller is combined with eccentricity filter for the attenuation of the exit thickness variation due to the entry thickness variation. The simulation results show that the roll eccentricity disturbance is significantly eliminated and other disturbances also are attenuated.

PID Control for Nonlinear Multivariable System using GA (GA를 이용한 비선형 다변수시스템의 PID제어)

  • Seo, Kang-Myun;An, Joung-Hoon;Kang, Moon-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2146-2148
    • /
    • 2002
  • In this paper, PID control method using genetic algorithm to control the nonlinear multivariable system is presented. Genetic algorithms are global search techniques for nonlinear optimization. For experiment, the x-y rod balancing system with driver circuit board is fabricated. Experiments such as angle and position control for system are performed. The validity and control performance of the GA-based PID controller are confirmed by experimental results.

  • PDF

Application of CDM to MIMO Systems: Control of Hot Rolling Mill

  • Kim, Young-Chol;Hur, Myung-Jun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.250-256
    • /
    • 2001
  • This paper deals with a design problem of a decentralized controller with a strongly connected two-input two-output multivariable system. To this end, we present a classical design approach which consists of two main steps: one is to decompose the multivariable plant into two single-input single-output systems by means of the Individual Channel Design (ICD) concept, the other is to design controller of each channel by the Coefficient Diagram Method (CDM) so that it satisfies, especially, time domain specifications such as settling time, overshoot etc.. A design procedure was proposed and then was applied to a 2$\times$2 hot rolling mill plant. Simulation results showed that the proposed method has excellent control performances.

  • PDF

Design of the Position Control System for a Nonlinear Multivariable Launcher (비선형 다변수 발사대의 위치 제어시스템 설계)

  • Kim, Jong-Shik;Han, Seong-Ik;Sim, Woo-Jeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.154-166
    • /
    • 1992
  • A kinematic nonlinear multivariable launcher is modeled of which the azimuth and elevation axes are drived simultaneously and position control systems are designed for this system by the PD and LQG/LTR control methods. Also, the suitable command input fonction is suggested for the desired command following performance and the two control systems with disturbances and load variation are evaluated for the entire operating range by computer simulation. It is found that the two linear controllers can be used for the kinematic nonlinear multivariable launcher in the entire operating range and LQG/LTR controller is more effective for disturbance rejection.

  • PDF

Adaptive Control of a Multivariable System Using $\mu$-Computer (마이크로콤퓨터를 이용한 다변수 시스템의 적응제어에 관한 연구)

  • Kim, Young-Key;Bien, Zeungnam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.5
    • /
    • pp.27-33
    • /
    • 1979
  • It is reported that a typical multivariable system of chemical process type was constructed and control experiment was conducted using a $\mu$-computer instead of using conventional hardwave controller. When the pressure of water to be supplied to the multivariable system is varying, an adaptive control method using a flowmeter is suggested to enhance the control performance.

  • PDF

Multivariable State Feedback Control for Three-Phase Power Conversion systems (3상 전력변환 시스템을 위한 다변수 상태궤환 제어)

  • 이동춘;이지명
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • In this paper, a novel multivariable state feedback control with feedforward control is proposed to improve control performance of power conversion systems. The targets of the application are three-phase voltage-source PWM converter and inverter system, and current-source PWM converter and inverter system, of which equivalent circuits and models are derived and analyzed. Various simulation results are presented to verify the validity of the proposed scheme.

  • PDF

A study on automatic adjustment of white-balance for color television by using the fuzzy logic (애매논리를 이용한 칼라 텔레비전의 백색균형 자동조정에 관한 연구)

  • Chae, Seog;Oh, Young-Suk;Lee, Sang-Yun;Lee, Ji-Hong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.6
    • /
    • pp.20-27
    • /
    • 1993
  • The white-balance system for color tevision is characterized by 5 input-5 output nonlinear process. A design strategy of fuzzy control rules is treated in which it can be adopted to the white balance adjustment for color television. A fuzzy rule based on an expert's knowledge is constructed, and then a multivariable fuzzy control rule is designed. Since human has just two hands, he can manipulate two variables simutaneously. In case when the process to be controlled has more than three control variables, expert's control rule is much different from the multivariable control rule. A multivariable fuzzy control rule is constructed by utilizing the expert' knowledge and rough relations between input and output variables, and its usefulness is shown by experiments.

  • PDF

Multivariable Optimal Control of a Direct AC/AC Converter under Rotating dq Frames

  • Wan, Yun;Liu, Steven;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.419-428
    • /
    • 2013
  • The modular multilevel cascade converter (MMCC) is a new family of multilevel power converters with modular realization and a cascaded pattern for submodules. The MMCC family can be classified by basic configurations and submodule types. One member of this family, the Hexverter, is configured as Double-Delta Full-Bridge (DDFB). It is a novel multilevel AC/AC converter with direct power conversion and comparatively fewer required components. It is appropriate for connecting two three-phase systems with different frequencies and driving an AC motor directly from a utility grid. This paper presents the dq model of a Hexverter with both of its AC systems by state-space representation, which then simplifies the continuous time-varying model into a periodic discrete time-invariant one. Then a generalized multivariable optimal control strategy for regulating the Hexverter's independent currents is developed. The resulting control structure can be adapted to other MMCCs and is flexible enough to include other control criterion while guaranteeing the original controller performance. The modeling method and control design are verified by simulation results.

A multivariable decoupling self-tuning controller for systems with time delays (시간 지연을 갖는 다변수 계통에 대한 비결합 자기동조 제어기)

  • 김유택;양태규;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.190-192
    • /
    • 1987
  • In the paper an multivariable decoupling self-tuning algorithm is proposed for controller design, by specifying the closed-loop behaviour of the system in the form of a reference model, so that the controller parameters can be estimated on-line as the process development. The effectiveness of this algorithm in controlling multivariable systems is demonstrated by simulation example in spite of the usual implementation problems of self-tuning controllers.

  • PDF