• Title/Summary/Keyword: multiuser interference

Search Result 156, Processing Time 0.026 seconds

A Study on Blind Multiuser Detection using the Constant Modulus Algorithm for DS-CDMA Systems (DS-CDMA 시스템 환경에서 Constant Modulus 알고리즘을 이용한 블라인드 다중사용자 검출에 관한 연구)

  • 김대규;우대호;변윤식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.2004-2010
    • /
    • 1999
  • This paper presents the blind multiuser detector using the constant modulus algorithm(CMA) to solve the near-far problem in DS-CDMA systems. The convergence property of the detector is compared with the conventional MOE(minimum output energy) detector by means of SIR(signal-to-interference ratio). The MOE detector needs both the spreading code of the users and the timing information, while proposed methods needs only information about the spreading code of users Simulation results show that the CMA-based detector is superior to the conventional blind MOE multiuser detector. For this, the BER performance was tested using different values of SNR and near-far ratio. The SIR is also investigated for different number of users in AWGN and Rayleigh fading channels. We have observed that the proposed blind multiuser detector performs better than conventional MOE multiuser detector.

  • PDF

Multiuser Precoding and Power Allocation with Sum Rate Matching for Full-duplex MIMO Relay (전이중 MIMO 릴레이를 위한 다중 사용자 Precoding 및 Sum Rate 정합 기반 전력 할당 기법)

  • Lee, Jong-Ho;Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.1020-1028
    • /
    • 2010
  • Relay has attracted great attention due to its inherent capability to extend the service coverage and combat shadowing in next generation mobile communication systems. So far, most relay technologies have been developed under the half-duplex (HD) constraint that prevents relays from transmitting and receiving at the same time. Although half-duplex relay (HDR) is easy to implement, it requires partitioning of resource for transmission and reception, reducing the whole system capacity. In this paper, we propose a multinser precoding and power control scheme with sum rate matching for a full-duplex (FD) multiple-input multiple-output (MIMO) relay. Full-duplex relay (FDR) can overcome the drawback of HDR by transmitting and receiving on the same frequency at the same time, while it is crucial to reduce the effect of self-interference that is caused by its own transmitter to its own receiver. The proposed precoding scheme cancels the self-interference of the FDR as well as to support multiuser MIMO. Moreover, we suggest a power allocation scheme for FD MIMO relay with the constraint that the sum rate of the relay's received data streams is equal to that of the relay's transmit data streams.

An Efficient frame size Decision and Resource Allocation Method for Multiuser OFDM/TDD System in Multicell Environment (멀티셀 기반의 다중 사용자 OFDM-TDD 시스템에서 효과적인 프레임 크기 결정과 자원 할당 기법)

  • Keum Seung-Won;Kim Jung-Gon;Shin Kil-Ho;Kim Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.760-768
    • /
    • 2006
  • In this paper, an novel resource allocation scheme is proposed for adaptive multiuser OFDM-TDD systems in multiuser, multicell and frequency-selective time-varying channels. The optimal frame size and mode switching level of each user is determined by maximizing the spectrum efficiency. In multi-cell environment, the allocation scheme must consider the cochannel interference of other cells. The measured SINR is changed in one frame size because the interference is changed. The frame size is determined to consider both the optimal frame size and cochannel user's frame size of other cells. we propose the efficient resource allocation scheme which is satisfied the target BER.

A Hybrid Multiuser Detection Algorithm for Outer Space DS-UWB Ad-hoc Network with Strong Narrowband Interference

  • Yin, Zhendong;Kuang, Yunsheng;Sun, Hongjian;Wu, Zhilu;Tang, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1316-1332
    • /
    • 2012
  • Formation flying is an important technology that enables high cost-effective organization of outer space aircrafts. The ad-hoc wireless network based on direct-sequence ultra-wideband (DS-UWB) techniques is seen as an effective means of establishing wireless communication links between aircrafts. In this paper, based on the theory of matched filter and error bits correction, a hybrid detection algorithm is proposed for realizing multiuser detection (MUD) when the DS-UWB technique is used in the ad-hoc wireless network. The matched filter is used to generate a candidate code set which may contain several error bits. The error bits are then recognized and corrected by an novel error-bit corrector, which consists of two steps: code mapping and clustering. In the former step, based on the modified optimum MUD decision function, a novel mapping function is presented that maps the output candidate codes into a feature space for differentiating the right and wrong codes. In the latter step, the codes are clustered into the right and wrong sets by using the K-means clustering approach. Additionally, in order to prevent some right codes being wrongly classified, a sign judgment method is proposed that reduces the bit error rate (BER) of the system. Compared with the traditional detection approaches, e.g., matched filter, minimum mean square error (MMSE) and decorrelation receiver (DEC), the proposed algorithm can considerably improve the BER performance of the system because of its high probability of recognizing wrong codes. Simulation results show that the proposed algorithm can almost achieve the BER performance of the optimum MUD (OMD). Furthermore, compared with OMD, the proposed algorithm has lower computational complexity, and its BER performance is less sensitive to the number of users.

Time Constant Control Method for Hopfield Neural Network based Multiuser Detector of Multi-Rate CDMA system (시정수 제어 기법이 적용된 Multi-Rate CDMA 시스템을 위한 Hopfield 신경망 기반 다중 사용자 검출기)

  • 김홍열;장병관;전재춘;황인관
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6A
    • /
    • pp.379-385
    • /
    • 2003
  • In this paper, we propose a time constant control method for sieving local minimum problem of the multiuser detector using Hopfield neural network for synchronous multi-rate code division multiple access(CDMA) system in selective fading environments and its performance is compared with that of the parallel interference cancellation(PIC). We also assume that short scrambling codes of 256 chip length are used an uplink, suggest a simple correlation estimation algorithm and circuit complexity reduction method by using cyclostationarity property of short scrambling code.It is verified that multiuser detector using Hopfield neural network more efficiently cancels multiple access interference(MAI) and obtain better bit error rate and near-far resistant than conventional detector.

SLNR-Based Precoder Design for Multiuser MIMO in Distributed Antenna Systems (분산 안테나 시스템에서 다중 사용자 MIMO를 위한 SLNR 기반의 프리코더 설계)

  • Seo, Bangwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.75-82
    • /
    • 2018
  • In this paper, we consider a precoder design for downlink multiuser multiple-input multiple-output (MU-MIMO) in distributed antenna systems (DAS). In DAS, remote radio heads (RRHs) are placed at geographically different locations within a cell area. Three different precoder design schemes are proposed to maximize the separate or joint signal-to-leakage-plus-noise ratio (SLNR) metrics by considering RRH sum power or per-RRH power constraints. The analytical closed-form form solution for each optimization problem is presented. Through computer simulation, we show that the joint SLNR based precoding schemes have better signal-to-interference-plus-noise ratio (SINR) and bit error rate (BER) performances than the separate SLNR based schemes. Also, it is shown that the precoding scheme with RRH sum power constraint has better performance than the precoding scheme with per-RRH power constraint.

Rejection of Interference Signal Using Neural Network in Multi-path Channel Systems (다중 경로 채널 시스템에서 신경회로망을 이용한 간섭 신호 제거)

  • 석경휴
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.357-360
    • /
    • 1998
  • DS/CDMA system rejected narrow-band interference and additional White Gaussian noise which are occured at multipath, intentional jammer and multiuser to share same bandwidth in mobile communication systems. Because of having not sufficiently obtained processing gain which is related to system performance, they were not effectively suppressed. In this paper, an matched filter channel model using backpropagation neural network based on complex multilayer perceptron is presented for suppressing interference of narrow-band of direct sequence spread spectrum receiver in DS/CDMA mobile communication systems. Recursive least square backpropagation algorithm with backpropagation error is used for fast convergence and better performance in matched filter receiver scheme. According to signal noise ratio and transmission power ratio, computer simulation results show that bit error ratio of matched filter using backpropagation neural network improved than that of RAKE receiver of direct sequence spread spectrum considering of con-channel and narrow-band interference.

  • PDF

Performance Analysis of Multi-Carrier CDMA Trellis Coded 16 QAM System with Near/Far Effect in Frequency Selective Multipath Fading Channel (주파수 선택성 다중경로 페이딩 채널에서 Near/Far 영향을 받는 Multi-Carrier CDMA Trellis Coded 16 QAM 시스템의 성능해석)

  • 노재성;강희조;김춘길;김언곤;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.352-361
    • /
    • 2000
  • The performance of a multi-carrier CDMA system is analyzed considering frequency selective multipath fading and Near/Far effects. The number of multicarrier, multiuser, and arms of RAKE receiver, and the decay ratio of frequency selective multipath fading are used as a parameter for the performance analysis. More over, the distribution and the strength of multiuser interference are also considered. To evaluate the Near/Far effects in a multi-carrier CDMA system, three distribution models are assumed. In the first model, interference to carrier Ratio, I/C, ranges from -4 dB to 4dB, and at each 2 dB interval, 20 % of multiuser is assumed to be uniformly distributed. In the second one, I/C ranges from -2 dB to 2 dB, and 33.3% of multiuser is assumed to be equally dispersed at each 2dB interval. The third model is 0 dB of I/C, that is, with perfect power control, multiuser are assumed to be evenly located. In this paper, multi-carrier CDMA system adoption RAKE receiver is proposed to mitigate the frequency selective multipath fading. From the results, the third model(i.e. perfect power control) shows the best performance, and the narrower range of I/C causes the less effects to the desired signal, which reads to the better performance.

  • PDF

User Selection Method of Subspace Interference Alignment in Multi-cell Uplink Systems (다중 셀 상향링크에서 부분공간 간섭 정렬의 사용자 선택 방법)

  • Seo, Jong-Pil;Kim, Hyun-Soo;Ahn, Jae-Jin;Chung, Jae-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.238-244
    • /
    • 2010
  • We propose a user selection method in multi-cell multiuser uplink system with the subspace interference alignment to maintain the high sum-rate capacity. The proposed method selects users whose interference to adjacent cells are strong and apply the subspace interference alignment to the users. The proposed method provides that the number of users performing the interference alignment reduces and the high total sum-rate is maintained. Simulation results exhibit the proposed method reduces the number of users who would decompose the channel for the subspace interference alignment by 50% when the required sum-rate is 90% of the maximal achievable sum-rate.

Subcarrier and Power Allocation for Multiuser MIMO-OFDM Systems with Various Detectors

  • Mao, Jing;Chen, Chen;Bai, Lin;Xiang, Haige;Choi, Jinho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4738-4758
    • /
    • 2017
  • Resource allocation plays a crucial role in multiuser multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) systems to improve overall system performance. While previously proposed resource allocation algorithms are mainly designed from the point of view of the information-theoretic, we formulate the resource allocation problem as an average bit error rate (BER) minimization problem subject to a total power constraint when considering employing realistic MIMO detection techniques. Subsequently, we derive the optimal subcarrier and power allocation algorithms for three types of well-known MIMO detectors, including the maximum likelihood (ML) detector, linear detectors, and successive interference cancellation (SIC) detectors. To reduce the complexity, we also propose a two-step suboptimal algorithm that separates subcarrier and power allocation for each detector. We also analyze the diversity gain of the proposed suboptimal algorithms for various MIMO detectors. Simulation results confirm that the proposed suboptimal algorithm for each detector can achieve a comparable performance with the optimal allocation with a much lower complexity. Moreover, it is shown that the suboptimal algorithms perform better than the conventional algorithms that are known in the literature.