• 제목/요약/키워드: multiplex real-time PCR

검색결과 59건 처리시간 0.028초

Development of Raw Material Identification Method of Changnan-jeot and Gaiyang-jeot Using Multiplex PCR and Real-Time PCR (Multiplex PCR과 Real-Time PCR을 이용한 창난젓과 가이양젓 원료 검사법 개발)

  • Choi, Seong Seok;Seo, Yong Bae;Kim, Jong-Oh;Yang, Ji-Young;Shin, Jiyoung;Kim, Gun-Do
    • Journal of Food Hygiene and Safety
    • /
    • 제36권4호
    • /
    • pp.289-297
    • /
    • 2021
  • In this study, multiplex PCR and real-time PCR were performed on Theragra chalcogramma (walleye pollock), Pangasianodon hypophthalmus (iridescent shark) and their processed foods, such as changnan-jeot and gaiyang-jeot (salted iridescent shark intestine). Species-specific primers for T. chalcogramma and P. hypophthalmus were designed, and genomic DNA was directly extracted from each sample to perform single PCR and multiplex PCR. As a result of PCR, in the case of single PCR, PCR bands of T. chalcogramma (297 bp) and P. hypophthalmus (132 bp) were identified, and in the case of multiplex PCR, it was confirmed that amplification occurred without cross-reaction between T. chalcogramma and P. hypophthalmus. As a result of checking the PCR sensitivity, the concentration of genomic DNA was detected up to 0.1 ng/µL in both single PCR and multiplex PCR. The real-time PCR results showed that the average Ct value of T. chalcogramma was 20.765±0.691, and the average Ct value of P. hypophthalmus sample was 35.719±1.828 in the T. chalcogramma species-specific primers. In the P. hypophthalmus species-specific primers, the average Ct value of the T. chalcogramma sample was 35.996±1.423, and the mean Ct value of the P. hypophthalmus sample was 20.096±0.793. These results demonstrated the significant differences in the efficiency, specificity and cross-reactivity of species-specific primers in real-time PCR. Based on these findings, 7 of changnan-jeot or gaiyang-jeot products were confirmed by multiplex PCR and real-time PCR, and valid results were confirmed in all samples.

Multiplex Real-Time PCR for Simultaneous Detection of 6 Periodontopathic Bacteria (Multiplex Real-Time PCR을 이용하여 6종의 주요 잇몸질환 유발 미생물을 동시에 검출하는 기법)

  • Cho, Hong-Bum
    • Korean Journal of Microbiology
    • /
    • 제49권3호
    • /
    • pp.292-296
    • /
    • 2013
  • This study utilized an analysis method for detecting six microorganisms, such as Actinobacillus actinomycetemcomitans, Campylobacter rectus, Porphyromonas gingivalis, Tannerella forsythus, Treponema denticola, and Prevotella intermedia, triggering periodontal disease, using multiplex real-time polymerase chain reaction (PCR). The analysis including internal control was made by dividing the six species into two groups using four fluorescence dyes, and it was verified that there was no interference or cross-reaction between the target species and different kinds of oral microbial species. Qualitative and quantitative analyses were conducted on each microorganism in various samples, such as saliva and the plaque, using the multiplex real-time PCR and comparative analysis between periodontitis patients and healthy people, revealing obvious differences between them.

Simultaneous Detection of Major Pathogens Causing Bovine Diarrhea by Multiplex Real-time PCR Panel (Multiplex real-time PCR을 이용한 송아지 설사병 원인 주요 병원체의 동시검출)

  • Kim, Won-Il;Cho, Yong-Il;Kang, Seog-Jin;Hur, Tai-Young;Jung, Young-Hun;Kim, Nam-Soo
    • Journal of Veterinary Clinics
    • /
    • 제29권5호
    • /
    • pp.377-383
    • /
    • 2012
  • Bovine diarrhea is a major economical burden to the bovine industry in Korea. Since multiple infectious agents can be involved in bovine diarrhea, differential diagnosis is essential for effective treatment. Therefore, a panel of two multiplex real-time PCR assays which can simultaneously detect six major bovine enteric pathogens [i.e., bovine viral diarrhea virus (BVDV), bovine coronavirus (BCoV), group A bovine rotavirus (BRV), Salmonella spp., Escherichia coli (E. coli) $K99^+$, and Cryptosporidium parvum] was developed and applied to test 97 fecal samples collected from cattle farms in Korea. In addition, microscopic examination was also preformed on the samples to detect Coccidium oocyst. The estimated sensitivity of the multiplex PCR was 0.1 $TCID_{50}$ for BVDV, BCoV and group A BRV, 5 and 0.5 CFU for E. coli $K99^+$ and Salmonella, respectively, and 50 oocysts for Cryptosporidium. The amplification efficiency of the multiplex PCR ranged between 0.97 and 0.99 for each pathogen. Among 97 samples, 36 samples were positive for at least one of the 6 major pathogens and 6 samples were simultaneously positive for 2 pathogens by the multiplex PCR assay. Coccidium oocysts were also detected in 48 samples, which were all collected from over 1 month old calves. In conclusion, the multiplex real-time PCR panel can be a useful tool for fast and accurate diagnosis of calf diarrhea associated with BVDV, BCoV, group A BRV, E. coli $K99^+$, Salmonella, and/or Cryptosporidium and Coccidium may be an important target which needs to be included in the multiplex PCR panel in the future.

Determination of Sperm Sex Ratio in Bovine Semen Using Multiplex Real-time Polymerase Chain Reaction

  • Khamlor, Trisadee;Pongpiachan, Petai;Sangsritavong, Siwat;Chokesajjawatee, Nipa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권10호
    • /
    • pp.1411-1416
    • /
    • 2014
  • Gender selection is important in livestock industries; for example, female calves are required in the dairy industry. Sex-sorted semen is commonly used for the production of calves of the desired gender. However, assessment of the sex ratio of the sorted semen is tedious and expensive. In this study, a rapid, cost effective and reliable method for determining the sex ratio was developed using a multiplex real-time polymerase chain reaction (PCR) assay. In this assay, the X and Y chromosome-specific markers, i.e., bovine proteolipid protein (PLP) gene and sex-determining region Y (SRY) were simultaneously quantified in a single tube. The multiplex real-time PCR assay was shown to have high amplification efficiencies (97% to 99%) comparable to the separated-tube simplex real-time PCR assay. The results obtained from both assays were not significantly different (p>0.05). The multiplex assay was validated using reference DNA of known X ratio (10%, 50%, and 90%) as templates. The measured %X in semen samples were the same within 95% confidence intervals as the expected values, i.e., >90% in X-sorted semen, <10% in Y-sorted semen and close to 50% in the unsorted semen. The multiplex real-time PCR assay as shown in this study can thus be used to assess purity of sex-sorted semen.

Comparison of Molecular Assays for the Rapid Detection and Simultaneous Subtype Differentiation of the Pandemic Influenza A (H1N1) 2009 Virus

  • Lee, Mi Kyung;Kim, Hye Ryoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권8호
    • /
    • pp.1165-1169
    • /
    • 2012
  • In April 2009, the H1N1 pandemic influenza virus emerged as a novel influenza virus. The aim of this study was to compare the performances of several molecular assays, including conventional reverse transcription polymerase chain reaction (RT-PCR), two real-time reverse transcription (rRT)-PCRs, and two multiplex RTPCRs. A total of 381 clinical specimens were collected from patients (223 men and 158 women), and both the Seeplex RV7 assay and rRT-PCR were ordered on different specimens within one week after collection. The concordance rate for the two methods was 87% (332/381), and the discrepancy rate was 13% (49/381). The positive rates for the molecular assays studied included 93.1% for the multiplex Seeplex RV7 assay, 93.1% for conventional reverse transcription (cRT)-PCR, 89.7% for the multiplex Seeplex Flu ACE Subtyping assay, 82.8% for protocol B rRT-PCR, and 58.6% for protocol A rRT-PCR. Our results showed that the multiplex Seeplex assays and the cRT-PCR yielded higher detection rates than rRT-PCRs for detecting the influenza A (H1N1) virus. Although the multiplex Seeplex assays had the advantage of simultaneous detection of several viruses, they were time-consuming and troublesome. Our results show that, although rRT-PCR had the advantage, the detection rates of the molecular assays varied depending upon the source of the influenza A (H1N1)v virus. Our findings also suggest that rRT-PCR sometimes detected virus in extremely low abundance and thus required validation of analytical performance and clinical correlation.

Development of Molecular Diagnosis Using Multiplex Real-Time PCR and T4 Phage Internal Control to Simultaneously Detect Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis from Human Stool Samples

  • Shin, Ji-Hun;Lee, Sang-Eun;Kim, Tong Soo;Ma, Da-Won;Cho, Shin-Hyeong;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • 제56권5호
    • /
    • pp.419-427
    • /
    • 2018
  • This study aimed to develop a new multiplex real-time PCR detection method for 3 species of waterborne protozoan parasites (Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis) identified as major causes of traveler's diarrhea. Three target genes were specifically and simultaneously detected by the TaqMan probe method for multiple parasitic infection cases, including Cryptosporidium oocyst wall protein for C. parvum, glutamate dehydrogenase for G. lamblia, and internal transcribed spacer 1 for C. cayetanensis. Gene product 21 for bacteriophage T4 was used as an internal control DNA target for monitoring human stool DNA amplification. TaqMan probes were prepared using 4 fluorescent dyes, $FAM^{TM}$, $HEX^{TM}$, $Cy5^{TM}$, and CAL Fluor $Red^{(R)}$ 610 on C. parvum, G. lamblia, C. cayetanensis, and bacteriophage T4, respectively. We developed a novel primer-probe set for each parasite, a primer-probe cocktail (a mixture of primers and probes for the parasites and the internal control) for multiplex real-time PCR analysis, and a protocol for this detection method. Multiplex real-time PCR with the primer-probe cocktail successfully and specifically detected the target genes of C. parvum, G. lamblia, and C. cayetanensis in the mixed spiked human stool sample. The limit of detection for our assay was $2{\times}10$ copies for C. parvum and for C. cayetanensis, while it was $2{\times}10^3$ copies for G. lamblia. We propose that the multiplex real-time PCR detection method developed here is a useful method for simultaneously diagnosing the most common causative protozoa in traveler's diarrhea.

Rapid and Specific Detection of Virulent V. vulnificus in Tidal Flat Sediments (갯벌 퇴적물내 병원성 Vibrio vulnificus의 신속하고 특이적인 검출)

  • Byun Ki-Deuk;Lee Jung-Hyun;Lee Kye-Joon;Kim Sang-Jin
    • Korean Journal of Microbiology
    • /
    • 제41권3호
    • /
    • pp.168-176
    • /
    • 2005
  • Vibrio vulnificus, one of the marine bacterial pathogens causing septicemia, was detected using molecular methods, namely, PCR and/or Southern hybridization, and real-time PCR. Extracted and purified total DNAs by using commercial kits were used as templates for PCR. Multiplex-PCR was conducted by employing three sets of primers for the genes, hemolysin (vvhA), phosphomannomutase (pmm), and metalloprotease (vvpE), for V vulnificus virulence. The presence of DMSO ($5\%$) and BSA ($0.1\%$) in PCR reaction mixture improved a detection efficiency by higher PCR band intensities. TaqMan real-time PCR was carried out by using gene segment of vvhA as a target. Detection limit of PCR/Southern hybridization without enrichments was to be around $10^2\;cells\;g^{-1}$ of sample. However, those three methods using the enrichment at $35^{\circ}C$ in APW showed high sensitivity ($2\~10\;cells\;g^{-1}$ of sediments). Highly sensitive detection of V vulnificus by real-time PCR was achieved within $5\~6$ hr, whereas the detection by PCR/Southern hybridization required about 36 hr. Thus, it was evident that real-time PCR is the most rapid and efficient method for detecting V vulnificus in tidal flat sediments.

Quantitative detection of peri-implantitis bacteria using real-time PCR (Real-time PCR을 이용한 임플란트주위염 원인균의 정량적 분석)

  • Kim, Min-Jung;Han, Gyeong-Soon
    • Journal of Korean society of Dental Hygiene
    • /
    • 제21권5호
    • /
    • pp.555-565
    • /
    • 2021
  • Objectives: This study was conducted to analyze peri-implantitis bacteria and identify their associations with health status and health activities. Methods: Gingival sulcus fluid at the implant's periodontal pockets sampled from the participants were analyzed by multiplex real time PCR. Results: Participants had strains in the order of 100% F. nucleatum, 98.0% E. corrodens, and 96.0% P. micra, and the correlation between C. rectus and E. nodatum was high (p<0.01). Diabetic group (P. gingivalis, P. nigrescens) hypertension (P. nigrescens), group with four or more periodontal pockets (P. gingivalis, T. dentica, P. intermedia, E. nodatum, and C. rectum), smoking (P. micra, E. corrodens), drinking (T. dentola), and scaling groups (C. rectus) were found to have more strains (p<0.05). Conclusions: Representative pathogenic microorganisms detected in periodontal pockets of implants were similar to dental periodontal pockets; however there were differences in the amount and distribution of microorganisms, and they were affected by health status and health behavior.

Development of Ultra-rapid Multiplex Real-time PCR for the Detection of Genes from Avian Influenza Virus subtype H5N1 (조류인플루엔자 H5N1 바이러스 유전자의 신속 검출을 위한 초고속 다중 실시간 PCR법의 개발)

  • Kim, Eul-Hwan;Lee, Dong-Woo;Han, Sang-Hoon;Lim, Yoon-Kyu;Yoon, Byoung-Su
    • Korean Journal of Veterinary Research
    • /
    • 제47권4호
    • /
    • pp.399-407
    • /
    • 2007
  • Cause of high lethality and dissemination to human being, new development of rapid method for the detection of highly pathogenic Avian Influenza Virus (AIV) is still necessary. For the detection of AIV subtype H5N1, typical pathogenic AIV, new method to confirm sub-typing of this virus is also needed. For the purpose of ultra-rapid detection and sub-typing of hemagglutinin and neuraminidase of AIV, this study was planned. As the results we could demonstrate an ultra-rapid multiplex real-time PCR (URMRT PCR) for the detection of AIV In this study, the URMRT PCR were optimized with synthesized AIV H5- and AIV Nl-specific DNA templates and GenSpector TMC, which is a semiconductor process technology based real-time PCR system with high frequencies of temperature monitoring. Under eight minutes, the amplifications of two AIV subtype-specific PCR products were successfully and independently detected by 30 cycled ultra-rapid PCR, including melting point analysis, from $1{\times}10^3$ copies of mixed template DNA. The URMRT PCR for the detection of AIV H5N 1 developed in this study could be expected to apply not only detections of different AIVs, but also various pathogens. It was also discussed that this kind of the fastest PCR based detection method could be improved by advance of related technology in near future.

Development of Real-time Quantitative PCR Assay based on SYBR Green I and TaqMan Probe for Detection of Apple Viruses (사과 바이러스 검정을 위한 SYBR Green I 및 TaqMan probe 기반의 real-time PCR 검사법 개발)

  • Heo, Seong;Chung, Yong Suk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제65권4호
    • /
    • pp.496-507
    • /
    • 2020
  • Virus infections of apples result in lowered commercial qualities such as low sugar content, weakened tree vigor, and malformed fruits. An effective way to control viruses is to produce virus-free plants based on the development of an accurate and sensitive diagnostic method. In this study, real-time PCR assays based on SYBR Green I and TaqMan probes were developed for detecting ASGV, ASPV, and ApMV viruses. These methods can detect and quantify 103 to 1011 RNA copies/μL of each virus separately. Compared with methods with two different dyes, the SYBR Green I-based method was efficient for virus detection as well as for assay using the TaqMan probe. Field tests demonstrated that real-time PCR methods developed in this study were applicable to high-throughput diagnoses for virus research and plant quarantine.