• Title/Summary/Keyword: multiple-resistance gene

Search Result 98, Processing Time 0.03 seconds

OsF3H Gene Increases Insect Resistancy in Rice through Transcriptomic Changes and Regulation of Multiple Biosynthesis Pathways

  • Rahmatullah Jan;Saleem Asif;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.287-287
    • /
    • 2022
  • In this study, we analyze RNA-seq data from OxF3Hand WT at several points (Oh, 3 h, 12 h, and 24 h) after WBPH infection. A number of the genes were further validated by RT-qPCR. Results revealed that highest number of DEGs (4,735) between the two genotypes detected after 24 h of infection. Interestingly, many of the DEGs between the WT and OsF3H under control conditions were also found to be differentially expressed in OsF3H in response to WBPH infestation. These results indicate that significant differences in gene expression between the "OxF3H" and "WT" exist as the infection time increases. Many of these DEGs were related to oxidoreductase activity, response to stress, salicylic acid biosynthesis, metabolic process, defense response to pathogen, cellular response to toxic substance, and regulation of hormones level. Moreover, genes involved in salicylic acid (SA) and Ethylene (Et) biosynthesis were upregulated in OxF3H plants while jasmonic acid (JA), Brassinosteroid (Br), and abscisic acid (ABA) signaling pathways were found downregulated in OxF3H plant during WBPH infestation. Interestingly, many DEGs related to pathogenesis such as OsPR1, OsPR1b, NPR1, OsNPR3 and OsNPR5 were found significantly upregulated in OxF3H plants. Additionally, genes related to MAPKs pathway, and about 30 WRKY genes involved in different pathways were found upregulated in OxF3H plants after WBPH infestation. This suggests that overexpression of the OxF3H gene leads to multiple transcriptomic changes and impact plant hormones, pathogenic related and secondary metabolites related genes and enhancing the plant resistance to WBPH infestation.

  • PDF

Association of MDR1 Gene Polymorphisms with Susceptibility to Hepatocellular Carcinoma in the Chinese Population

  • Ren, Yong-Qiang;Han, Ju-Qiang;Cao, Jian-Biao;Li, Shao-Xiang;Fan, Gong-Ren
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5451-5454
    • /
    • 2012
  • Objective: The objective of this study was to evaluate the association of MDR1 gene polymorphisms with susceptibility to hepatocellular carcinoma (HCC). Methods: A total of 689 HCC patients and 680 cancer-free subjects were enrolled. Human MDR1 gene polymorphisms were investigated by created restriction site-polymerase chain reaction (CRS-PCR) and DNA sequencing methods. Multiple logistic regression models were applied to estimate the association between MDR1 gene polymorphisms and susceptibility to HCC. Results: We detected a novel c.4125A>C polymorphism and our findings suggested that this variant was significantly associated with susceptibility to HCC. A significantly increased susceptibility to HCC was noted in the homozygote comparison (CC versus AA: OR=1.621, 95% CI 1.143-2.300, ${\chi}^2$=7.4095, P=0.0065), recessive model (CC versus AC+AA: OR=1.625, 95% CI 1.167-2.264, ${\chi}^2$=8.3544, P=0.0039) and allele contrast (C versus A: OR=1.185, 95% CI 1.011-1.389, ${\chi}^2$=4.4046, P=0.0358). However, no significant increase was observed in the heterozygote comparison (AC versus AA: OR=0.995, 95% CI 0.794-1.248, ${\chi}^2$=0.0017, P=0.9672) and dominant model (CC+AC versus AA: OR=1.106, 95% CI 0.894-1.369, ${\chi}^2$=0.8560, P=0.3549). Conclusions: These findings suggest that the c.4125A>C polymorphism of the MDR1 gene might contribute to susceptibility to HCC in the Chinese population. Further work will be necessary to clarify the relationship between the c.4125A>C polymorphism and susceptibility to HCC on larger populations of diverse ethnicity.

Pathogene Resistance of cotton GST cDNA in Transgenic Scrophularia buergeriana Misrule (목화 Glutathione S-Transferase (GST) 유전자로 형질 전환된 현삼의 내병성 특성)

  • 강원희;임정대;이성호;유창연
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.6
    • /
    • pp.297-304
    • /
    • 2001
  • Scrophularia buergeriana Misrule has been contaminated with various pathogens in condition of field and storage period. This study was carried out for production of multiple stress resistance plant containing disease resistance that CGST gene expressed in transgenic Scrophularia buergeriana Misrule genome. Glutathione S-Transferases (GSTs) detoxify endobiotic and xenobiotic compounds by covalent linking of tripeptide glutathione to hydrophobic substrate. GST enzymes have been identified and characterized in insects, bacteria, and many plant species. A cDNA clone of GST was introduced into Scrophularia buergeriana Miquel by transformation with Agrobacterium tumefaciences. In coporation of the CGST gene into S. buergeriana Misrule was confirmed by PCR analysis of genomic DNA. Influence of exposure to darkness on the regeneration potential and transformation frequence were assessed. The activity of GST in transgenic plants was two times higher than that of non-transgenic plants. As a result of anti-microbe assays, the crude extract protein of transgenic plants showed the antimicrobial effects higher than control plants.

  • PDF

Characterization of Sources of Resistance to Bacterial Spot in Capsicum Peppers (고추 세균성점무늬병 저항성 유전자원과 그 주요 특성)

  • Byeon, Si-Eun;Abebe, Alebel Mekuriaw;Jegal, Yoon-Hyuk;Wai, Khin Pa Pa;Siddique, Muhammad Irfan;Mo, Hwang-Sung;Yoo, Hee Ju;Jang, Kil-Su;Hwang, Ji-Eun;Jeon, Su-Gyeong;Lee, Su-Heon;Kim, Byung-Soo
    • Horticultural Science & Technology
    • /
    • v.34 no.5
    • /
    • pp.779-789
    • /
    • 2016
  • A total of 33 accessions of pepper (Capsicum spp.), including previously reported and newly discovered sources of resistance to bacterial spot caused by Xanthomonas euvesicatoria, were evaluated for their resistance to bacterial spot. The selected accessions were then grown and their horticultural characteristics were recorded. In a test for hypersensitive resistance (HR) to four races (P1, P3, P7, P8) of the pathogen found in Korea, KC00939 and Chilbok No.2, which carry the Bs2 gene, exhibited a hypersensitive response to all four races, as expected. Chilbok No.3, which carries the Bs3 gene, showed a hypersensitive reaction to race 1 and 7, as expected. KC00939 exhibited a high ASTA color value and tolerance to multiple infections from a viral complex of Cucumber mosaic virus (CMV) and Broad bean wilt virus (BBWV). Thus, this accession represents a promising genetic resource for breeding cultivars with multiple disease resistance and strong red coloration. KC01327, KC01617, KC01015, KC01760, KC01779, KC01137, KC01328, KC01006, KC00127, KC01704, and KC00995 did not exhibit hypersensitivity but showed a high level of general resistance when evaluated by spray inoculation. KC01617, KC01760, KC01779, KC01137, KC01704, and KC01777 are newly identified sources of resistance to bacterial spot. The previously and newly identified sources of resistance to bacterial spot evaluated in this study, including information about their resistance to CMV and BBWV complex in the field, the contents of pungent and sweet taste components, and the color values of dry fruits, will be useful for breeding pepper cultivars with resistance to bacterial spot.

Extracellular acidity enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis via DR5 in gastric cancer cells

  • Hong, Ran;Han, Song Iy
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.513-523
    • /
    • 2018
  • The tumor microenvironment greatly influences cancer cell characteristics, and acidic extracellular pH has been implicated as an essential factor in tumor malignancy and the induction of drug resistance. Here, we examined the characteristics of gastric carcinoma (GC) cells under conditions of extracellular acidity and attempted to identify a means of enhancing treatment efficacy. Acidic conditions caused several changes in GC cells adversely affecting chemotherapeutic treatment. Extracellular acidity did inhibit GC cell growth by inducing cell cycle arrest, but did not induce cell death at pH values down to 6.2, which was consistent with down-regulated cyclin D1 and up-regulated p21 mRNA expression. Additionally, an acidic environment altered the expression of atg5, HSPA1B, collagen XIII, collagen XXAI, slug, snail, and zeb1 genes which are related to regulation of cell resistance to cytotoxicity and malignancy, and as expected, resulted in increased resistance of cells to multiple chemotherapeutic drugs including etoposide, doxorubicin, daunorubicin, cisplatin, oxaliplatin and 5-FU. Interestingly, however, acidic environment dramatically sensitized GC cells to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Consistently, the acidity at pH 6.5 increased mRNA levels of DR4 and DR5 genes, and also elevated protein expression of both death receptors as detected by immunoblotting. Gene silencing analysis showed that of these two receptors, the major role in this effect was played by DR5. Therefore, these results suggest that extracellular acidity can sensitize TRAIL-mediated apoptosis at least partially via DR5 in GCs while it confers resistance to various type of chemotherapeutic drugs.

Identification of a Novel Bakanae Disease Resistance QTL in Zenith Cultivar Rice (Oryza sativa L.)

  • Sais-Beul Lee;Jun-Hyun Cho;Nkulu Rolly Kabange;Sumin Jo;Ji-Yoon Lee;Yeongho Kwon;Ju-Won Kang;Dongjin Shin;Jong-Hee Lee;You-Cheon Song;Jong-Min Ko;Dong-Soo Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.64-64
    • /
    • 2020
  • Bakanae disease, caused by several Fusarium species, imposes serious limitations to the productivity of rice across the globe. The incidence of this disease has been shown to increase, particularly in major rice-growing countries. Thus, the use of high resistant rice cultivars offers a comparative advantage, such as being cost effective, and could be preferred to the use of fungicides. In this research, we used a tropical japonica rice variety, Zenith, a bakanae disease resistant line selected as donor parent. A RIL population (F8:9) composed of 180 lines generated from a cross between Ilpum and Zenith was used. In primary mapping, a QTL was detected on the short arm of chromosome 1, covering about 3.5 Mb region flanked by RM1331 and RM3530 markers. The resistance QTL, qBK1Z, explained about 30.93% of the total phenotype variation (PVE, logarith of the odds (LOD) of 13.43). Location of qBK1Z was further narrowed down to 730 kb through fine mapping using additional RM markers, including those previously reported and developed by Sid markers. Furthermore, there is a growing need to improving resistance to bakanae disease and promoting breeding efficiency using MAS from qBK1Z region. The new QTL, qBK1Z, developed by the current study is expected to be used as foundation to promoting breeding efficiency with an enhanced resistance against bakanae disease. Moreover, this study provides useful information for developing resistant rice lines carrying single or multiple major QTLs using gene pyramiding approach and marker-assisted breeding.

  • PDF

Survey of extended-spectrum β-Lactamase (ESBL) in pathogenic Escherichia coli isolated from poultry in Korea (국내 가금유래 병원성 대장균의 extended-spectrum β-lactamase(ESBL) 특성 조사)

  • Sung, Myung-Suk;Kim, Jin-Hyun;Cho, Jae-Keun;Seol, Sung-Yong;Kim, Ki-Seuk
    • Korean Journal of Veterinary Research
    • /
    • v.48 no.3
    • /
    • pp.259-265
    • /
    • 2008
  • This study was conducted to investigate incidence of extended-spectrum ${\beta}$-lactamase (ESBL) producing strains and characteristics of ESBL gene in pathogenic Escherichia coli isolated from poultry during the period from April 2003 to December 2005 in Korea. Among 203 isolates, 4 isolates (3 from broilers and 1 from layer) were confirmed as ESBL producing strains by double disk synergy test, polymerase chain reaction and sequencing for ${\beta}$-lactamase genes. $bla_{CTX-M-15}$ and $bla_{CMY-2}$ were detected in these 4 isolates and were transferred to recipient by conjugation, respectively. Also, these ESBL producing strains were associated with multiple drug resistance. In conclusion, these results exhibit incidence of CTX-M and CMY-2 ${\beta}$-lactamase in pathogenic E coli from poultry in Korea, and clinically important meaning in human. And they also suggest the needs for rapid and broad surveillance to monitor ESBL genes and R plasmid transferring resistant gene in poultry.

Profiles of Enterotoxin Genes and Antimicrobial Resistance in Staphylococcus pseudintermedius Strains Isolated from Livestock and Companion Animals

  • Lee, Gi Yong;Lee, Haeng Ho;Um, Hong Sik;Yang, Soo-Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.6
    • /
    • pp.576-582
    • /
    • 2019
  • Staphylococcus pseudintermedius is an opportunistic pathogen in dogs and is recognized as a zoonotic pathogen causing public health concern. Although canine-associated S. pseudintermedius has mainly been recognized for its antimicrobial resistance and ability to cause skin infections in dogs, information on antimicrobial resistance profiles and enterotoxigenicity of S. pseudintermedius in livestock is very limited. In this study, we investigated the prevalence of 18 different staphylococcal enterotoxin (SE) genes and toxic shock syndrome toxin gene (tst-1) in S. pseudintermedius strains isolated from dogs, pigs, and beef cattle. Moreover, antimicrobial resistance profiles of the strains were determined along with the presence of mecA and SCCmec types. Except for one bovine isolate, all S. pseudintermedius isolates from dogs and pigs were resistant to multiple drugs (≥ 4 different drugs). Four out of six canine isolates were methicillin resistant and carried SCCmec type V. In addition, 11 different SE genes (seb, sec, see, seg, sei, sej, sel, seo, sep, seq, and seu) and tst-1 were identified in S. pseudintermedius isolates from dogs, pigs, and beef cattle. Most S. pseudintermedius isolates (83%) harbored multiple SE genes, and sel (42%) and sep (42%) were most frequently detected in the isolates. Our results suggested that S. pseudintermedius isolates from livestock and companion animals may serve as a reservoir for SE genes and antimicrobial resistance.

Characteristics of Antibiotic Resistant Bacteria in Urban Sewage and River (도시하수 및 그 주변 하천 환경 중 항생제 내성 세균 노출 특성)

  • Oh, Hyang-Kyun;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.232-239
    • /
    • 2009
  • This research investigated the characteristics of antibiotic resistance of bacteria in microbial communities from municipal wastewater treatment plants (MWTPs), and monitored seasonal changes of antibiotic resistant bacteria (ARB) from MWTPs and Han river. When antibiotics were amended to either R2A agar (R2A) for general heterotrophs or MacConeky sorbitol agar (MSA) for coliform bacteria, all the MWTP samples exhibited multiple antibiotic resistance on the antibiotic-amended solid media. The antibiotic resistance appearing frequencies of ampicillin and sulfathiazole, respectively, were higher than reported data for other countries. The antibiotic resistance appearances differed depending upon the concentrations of primary substrate and nutrients and the types of cultivation media. The following 16S rRNA gene phylogenetic analysis showed that the identified multiple-antibiotic resistant microbes on R2A plates were more likely to be known human-pathogenic bacteria than the background heterotrophic bacteria were, suggesting a high risk of antibiotic resistance appearance to public health. In addition, according to our investigation of seasonal changes of ARB from urban MWTP and river samples, the frequency of ARB appearances was shown to correlate positively with temperature. This indicates a possibility that global warming result in increase in microbial risk to public health.

Construction of a Shuttle Vector for Protein Secretory Expression in Bacillus subtilis and the Application of the Mannanase Functional Heterologous Expression

  • Guo, Su;Tang, Jia-Jie;Wei, Dong-Zhi;Wei, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.431-439
    • /
    • 2014
  • We report the construction of two Bacillus subtilis expression vectors, pBNS1/pBNS2. Both vectors are based on the strong promoter P43 and the ampicillin resistance gene expression cassette. Additionally, a fragment with the Shine-Dalgarno sequence and a multiple cloning site (BamHI, SalI, SacI, XhoI, PstI, SphI) were inserted. The coding region for the amyQ (encoding an amylase) signal peptide was fused to the promoter P43 of pBNS1 to construct the secreted expression vector pBNS2. The applicability of vectors was tested by first generating the expression vectors pBNS1-GFP/pBNS2-GFP and then detecting for green fluorescent protein gene expression. Next, the mannanase gene from B. pumilus Nsic-2 was fused to vector pBNS2 and we measured the mannanase activity in the supernatant. The mannanase total enzyme activity was 8.65 U/ml, which was 6 times higher than that of the parent strain. Our work provides a feasible way to achieve an effective transformation system for gene expression in B. subtilis and is the first report to achieve B. pumilus mannanase secretory expression in B. subtilis.