• 제목/요약/키워드: multiple support vector machine

검색결과 131건 처리시간 0.02초

Power Quality Disturbances Identification Method Based on Novel Hybrid Kernel Function

  • Zhao, Liquan;Gai, Meijiao
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.422-432
    • /
    • 2019
  • A hybrid kernel function of support vector machine is proposed to improve the classification performance of power quality disturbances. The kernel function mathematical model of support vector machine directly affects the classification performance. Different types of kernel functions have different generalization ability and learning ability. The single kernel function cannot have better ability both in learning and generalization. To overcome this problem, we propose a hybrid kernel function that is composed of two single kernel functions to improve both the ability in generation and learning. In simulations, we respectively used the single and multiple power quality disturbances to test classification performance of support vector machine algorithm with the proposed hybrid kernel function. Compared with other support vector machine algorithms, the improved support vector machine algorithm has better performance for the classification of power quality signals with single and multiple disturbances.

An Improved PSO Algorithm for the Classification of Multiple Power Quality Disturbances

  • Zhao, Liquan;Long, Yan
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.116-126
    • /
    • 2019
  • In this paper, an improved one-against-one support vector machine algorithm is used to classify multiple power quality disturbances. To solve the problem of parameter selection, an improved particle swarm optimization algorithm is proposed to optimize the parameters of the support vector machine. By proposing a new inertia weight expression, the particle swarm optimization algorithm can effectively conduct a global search at the outset and effectively search locally later in a study, which improves the overall classification accuracy. The experimental results show that the improved particle swarm optimization method is more accurate than a grid search algorithm optimization and other improved particle swarm optimizations with regard to its classification of multiple power quality disturbances. Furthermore, the number of support vectors is reduced.

A Multi-Class Classifier of Modified Convolution Neural Network by Dynamic Hyperplane of Support Vector Machine

  • Nur Suhailayani Suhaimi;Zalinda Othman;Mohd Ridzwan Yaakub
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.21-31
    • /
    • 2023
  • In this paper, we focused on the problem of evaluating multi-class classification accuracy and simulation of multiple classifier performance metrics. Multi-class classifiers for sentiment analysis involved many challenges, whereas previous research narrowed to the binary classification model since it provides higher accuracy when dealing with text data. Thus, we take inspiration from the non-linear Support Vector Machine to modify the algorithm by embedding dynamic hyperplanes representing multiple class labels. Then we analyzed the performance of multi-class classifiers using macro-accuracy, micro-accuracy and several other metrics to justify the significance of our algorithm enhancement. Furthermore, we hybridized Enhanced Convolution Neural Network (ECNN) with Dynamic Support Vector Machine (DSVM) to demonstrate the effectiveness and efficiency of the classifier towards multi-class text data. We performed experiments on three hybrid classifiers, which are ECNN with Binary SVM (ECNN-BSVM), and ECNN with linear Multi-Class SVM (ECNN-MCSVM) and our proposed algorithm (ECNNDSVM). Comparative experiments of hybrid algorithms yielded 85.12 % for single metric accuracy; 86.95 % for multiple metrics on average. As for our modified algorithm of the ECNN-DSVM classifier, we reached 98.29 % micro-accuracy results with an f-score value of 98 % at most. For the future direction of this research, we are aiming for hyperplane optimization analysis.

Least-Squares Support Vector Machine for Regression Model with Crisp Inputs-Gaussian Fuzzy Output

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권2호
    • /
    • pp.507-513
    • /
    • 2004
  • Least-squares support vector machine (LS-SVM) has been very successful in pattern recognition and function estimation problems for crisp data. In this paper, we propose LS-SVM approach to evaluating fuzzy regression model with multiple crisp inputs and a Gaussian fuzzy output. The proposed algorithm here is model-free method in the sense that we do not need assume the underlying model function. Experimental result is then presented which indicate the performance of this algorithm.

  • PDF

Support Vector Machine을 이용한 부도예측모형의 개발 -격자탐색을 이용한 커널 함수의 최적 모수 값 선정과 기존 부도예측모형과의 성과 비교- (Support Vector Bankruptcy Prediction Model with Optimal Choice of RBF Kernel Parameter Values using Grid Search)

  • 민재형;이영찬
    • 한국경영과학회지
    • /
    • 제30권1호
    • /
    • pp.55-74
    • /
    • 2005
  • Bankruptcy prediction has drawn a lot of research interests in previous literature, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper employs a relatively new machine learning technique, support vector machines (SVMs). to bankruptcy prediction problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, we use grid search technique using 5-fold cross-validation to find out the optimal values of the parameters of kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM. we compare its performance with multiple discriminant analysis (MDA), logistic regression analysis (Logit), and three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the other methods.

Quantitative Structure Activity Relationship Prediction of Oral Bioavailabilities Using Support Vector Machine

  • Fatemi, Mohammad Hossein;Fadaei, Fatemeh
    • 대한화학회지
    • /
    • 제58권6호
    • /
    • pp.543-552
    • /
    • 2014
  • A quantitative structure activity relationship (QSAR) study is performed for modeling and prediction of oral bioavailabilities of 216 diverse set of drugs. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regression (MLR), artificial neural network (ANN), support vector machine (SVM) and random forest (RF) techniques. Comparison between statistical parameters of these models indicates the suitability of SVM over other models. The root mean square errors of SVM model were 5.933 and 4.934 for training and test sets, respectively. Robustness and reliability of the developed SVM model was evaluated by performing of leave many out cross validation test, which produces the statistic of $Q^2_{SVM}=0.603$ and SPRESS = 7.902. Moreover, the chemical applicability domains of model were determined via leverage approach. The results of this study revealed the applicability of QSAR approach by using SVM in prediction of oral bioavailability of drugs.

개선된 QIM과 SVM을 이용한 공격에 강인한 다중 오디오 워터마킹 알고리즘 개발 (Development of a Robust Multiple Audio Watermarking Using Improved Quantization Index Modulation and Support Vector Machine)

  • 서예진;조상진;정의필
    • 융합신호처리학회논문지
    • /
    • 제16권2호
    • /
    • pp.63-68
    • /
    • 2015
  • 본 논문에서는 신호의 파워에 따라 적응적 스텝 사이즈를 갖는 개선된 QIM(Quantization index modulation)과 SVM(Support vector machine) 디코딩 모델을 이용한 다중 오디오 워터마킹 알고리즘을 제안한다. 워터마크는 주파수 크기 응답과 주파수 위상 응답에 QIM을 이용하여 삽입한다. 이는 주파수 크기 응답과 위상 응답에 강인한 공격이 다르기 때문에 양쪽 모두 삽입하여 강인성을 보완하기 위해서이다. 검출시에는 SVM 디코딩 모델을 사용하여 검출된 워터마크가 워터마크로서의 기능이 애매모호한 경우를 개선하여 검출 비율을 향상시킨다. 강인성 검증을 위해 11개의 공격을 사용하였고 그 결과 SVM 디코딩 모델을 사용하지 않은 기존의 다중 오디오 워터마킹 방법보다 훨씬 우수한 성능을 보였다. 특히 PSNR은 최대 7dB의 개선 효과를, BER은 10%의 개선 효과를 보인 것은 주목할 만한 결과이다.

이동 카메라 영상에서 움직임 정보와 Support Vector Machine을 이용한 다수 보행자 검출 (Multiple Pedestrians Detection using Motion Information and Support Vector Machine from a Moving Camera Image)

  • 임종석;박효진;김욱현
    • 융합신호처리학회논문지
    • /
    • 제12권4호
    • /
    • pp.250-257
    • /
    • 2011
  • 본 논문에서는 이동 카메라 영상에서 움직임 정보와 SVM(Support Vector Machine)을 이용하여 다수의 보행자를 검출하는 방법을 제안하였다. 먼저 연속된 영상의 특징점을 이용하여 카메라 자체의 움직임 보상용 한 후 차 영상과 프로젝션 히스토그램을 통해 움직이는 보행자를 검출한다. 차 영상을 이용한 보행자 검출은 간단한 방법이지만 움직임이 없는 보행자는 검출하지 못하는 단점이 있다. 따라서 이러한 단점을 보완하기 위하여 SVM을 이용하여 움직이지 않는 보행자를 검출하였다. SVM은 보행자 검출과 같은 이진 분류 문제에 우수한 성능을 보이는 것으로 알려져 있다. 하지만 영상 내에 보행자가 서로 인접해 있거나 팔과 다리를 과도하게 움직이는 경우 검출하지 못하는 단점이 있다. 그러므로 본 논문에서는 움직임 정보와 SVM을 이용하여 움직임이 없는 보행자와 보행자가 서로 인접해 있거나 과도한 동작을 취하는 경우에도 강건하게 검출할 수 있는 방법을 제안하였다. 본 논문에서 제안된 방법의 성능을 평가하기 위하여 다양한 실세계 영상을 이용하여 수행하였으며, 그 결과 평균 검출률이 94%, FP(False Positive)가 2.8%로 제안된 방법의 우수성을 입증하였다.

Multi-class SVM을 이용한 회전기계의 결함 진단 (Fault Diagnosis of Rotating Machinery Using Multi-class Support Vector Machines)

  • 황원우;양보석
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1233-1240
    • /
    • 2004
  • Condition monitoring and fault diagnosis of machines are gaining importance in the industry because of the need to increase reliability and to decrease possible loss of production due to machine breakdown. By comparing the nitration signals of a machine running in normal and faulty conditions, detection of faults like mass unbalance, shaft misalignment and bearing defects is possible. This paper presents a novel approach for applying the fault diagnosis of rotating machinery. To detect multiple faults in rotating machinery, a feature selection method and support vector machine (SVM) based multi-class classifier are constructed and used in the faults diagnosis. The results in experiments prove that fault types can be diagnosed by the above method.

GPS 재밍탐지를 위한 기계학습 적용 및 성능 분석 (Application and Performance Analysis of Machine Learning for GPS Jamming Detection)

  • 정인환
    • 한국정보기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.47-55
    • /
    • 2019
  • 최근 GPS 재밍으로 인한 피해가 증가되면서 GPS 재밍을 탐지하고 대비하기 위한 연구가 활발히 진행되고 있다. 본 논문은 다중 GPS 수신채널과 3가지 기계학습을 이용한 GPS 재밍 탐지 방법을 다루고 있다. 제안된 다중 GPS 채널은 항재밍 기능이 없는 상용 GPS 수신기와 항잡음 재밍능력만 있는 수신기, 항잡음/항기만 재밍능력이 있는 수신기로 구성되고 운용자는 각각의 수신기에 수신된 좌표를 비교하여 재밍신호의 특성을 식별할 수 있다. 본 논문에서는 신호특성이 다른 각각의 5개 재밍신호를 입력하고, 3가지 기계학습방법(AB: Adaptive Boosting, SVM: Support Vector Machine, DT: Decision Tree)을 이용하여 재밍탐지 시험을 수행하였다. 시험 결과 머신러닝 기법을 단독으로 사용하였을 때 DT 기법이 96.9% 탐지율로 가장 우수한 성능을 보였으며 이진분류기 기법에 비해 모호성 낮고 하드웨어가 단순하여 GPS 재밍탐지에 효과적임을 확인하였다. 또한, 모호성을 해결해주는 추가기법을 적용할 경우 SVM 기법을 활용할 수 있음을 확인하였다.