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ABSTRACT. A quantitative structure activity relationship (QSAR) study is performed for modeling and prediction of oral

bioavailabilities of 216 diverse set of drugs. After calculation and screening of molecular descriptors, linear and nonlinear

models were developed by using multiple linear regression (MLR), artificial neural network (ANN), support vector machine

(SVM) and random forest (RF) techniques. Comparison between statistical parameters of these models indicates the suitability of

SVM over other models. The root mean square errors of SVM model were 5.933 and 4.934 for training and test sets, respectively.

Robustness and reliability of the developed SVM model was evaluated by performing of leave many out cross validation test,

which produces the statistic of QSVM

2
= 0.603 and SPRESS = 7.902. Moreover, the chemical applicability domains of model

were determined via leverage approach. The results of this study revealed the applicability of QSAR approach by using SVM

in prediction of oral bioavailability of drugs.

Key words: Quantitative structure activity relationship, Support vector machine, Multiple linear regressions, Oral bioavailabil-

ity, Molecular descriptors

INTRODUCTION

Oral bioavailability is an important pharmacokinetic

property, which is defined as the fraction of an adminis-

tered dose of drug that reaches the systemic circulation

and is a critical property to be considered during the early

stages of drug design. Among the absorption, distribution,

metabolism and elimination (ADME) properties of a chemi-

cal, unfavorable oral bioavailability is indeed an import-

ant reason for stopping further development of the drug

candidates.1 The early evaluation of ADME properties in

drug research has driven the need for large scale screening

methods. In vitro and in vivo ADME assays are lengthy,

complex and relatively expensive in terms of resources,

reagents and detection techniques. Computational meth-

ods have emerged during the past decade as a powerful

strategy for the prediction of human pharmacokinetics. In

this regard, a variety of useful in silico models has been

developed with different levels of complexity for the screening

of large data sets of compounds, to creating tools that are

faster, simpler, and more cost effective than traditional

experimental procedures.2 Among theoretical methods,

quantitative structure activity relationships (QSAR) approaches

have been successfully established to predict the proper-

ties/activities of chemicals from their structural features.

The advantage of this approach over other methods lies in

the fact that it requires only the knowledge of chemical

structure. The main steps involved in QSAR are: data col-

lection, molecular geometry optimization, molecular descrip-

tor generation, descriptor selection, model development

and finally evaluation of the model performance.3 

There are some reports about QSAR prediction of oral

bioavailabilities of chemicals. For example, Andrew et al.

proposed a QSAR model that can achieve the coefficient

of multiple correlation of R2 = 0.71 by using 85 molecular

descriptors.2 In 2004, Tuner et al. developed QSAR model

for prediction of oral bioavailabilities of some chemicals

by using the artificial neural network (ANN).4 The training

and testing correlation coefficients given by the model

were 0.736 and 0.897, respectively. In 2007 Moda and the

coworkers reports the application of the hologram quan-

titative structure activity relationships (HQSAR) tech-

nique to construct a prediction model for the prediction of

human oral bioavailability.1 The correlation between experi-

mental and calculated values of oral bioavailabilities by their

model was 0.93 for training set. The main aim of the present

work is developing of some QSAR models by using multiple

linear regression (MLR), artificial neural network, support

vector machine (SVM) and random forest (RF) as model-

ing techniques to developing better QSAR models.

EXPERIMENTAL

Data Set

Data set consist the experimental bioavailabilities of 302

structurally divers chemicals that were reported in ref.1
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Table 1. Experimental and predicted values of human oral bioavailability for both training and test set compounds for SVM mode

No. Name Experimental Predicted Residual No. Name Experimental Predicted Residual

1 Abacavir* 86 76.6 9.4 49 Dihydroergosine 10 15.8 −5.8

2 Acetaminophen* 88 83.9 4.1 50 Diltiazem* 40 30.2 9.8

3 Acetylsalicylic* 68 81.1 −13.1 51 Diphenhydramine* 72 65.7 6.3

4 Albuterol 71 77 −6 52 Disopiramide* 83 93.1 −10.1

5 Almotriptan 70 72.6 −2.6 53 Dixyrazine 10 14.5 −4.5

6 Alosetron 55 59.8 −4.8 54 Domperidone 14 19.4 −5.4

7 Amiodarone 50 54.5 −4.5 55 Doxapram 61 55.8 5.2

8 Anastrozole 84 83.5 0.5 56 Doxazosin 65 64.9 0.1

9 Aprepitant 62.5 61.9 0.6 57 Dronabinol* 15 27 −12

10 Atomoxetine 63 68 −5 58 Drospirenone 76 69.9 6.1

11 Atorvastatin 14 19.3 −5.3 59 Dutasteride 60 54.3 5.7

12 Atovaquone 23 47 −24 60 Eletriptan 62.5 57.1 5.4

13 Bepridil 60 55.4 4.6 61 Emtricitabine 41 45.8 −4.8

14 Bosentan 50 55.1 −5.1 62 Endralazine* 75 79.1 −4.1

15 Budesonide 11 4.9 6.1 63 Eproxindine 70 65.3 4.7

16 Bufuralol* 46 46.4 −0.4 64 Escitalopram* 80 75.8 4.2

17 Bumetanide 81 76 5 65 Esomeprazole 90 85 5

18 Bupropion 70 64.5 5.5 66 Estradiol valerate* 3 4.5 −1.5

19 Busulfan 80 75.9 4.1 67 Ethambutol 77 81.7 −4.7

20 Caffeine* 100 95.5 4.5 68 Ethinyl 40 42.7 −2.7

21 Calcitriol 61 49.3 11.7 69 Famciclovir 77 72.3 4.7

22 Candesartan 15 13.1 1.9 70 Felodipine 15 20.4 −5.4

23 Carbamazepine 70 65.3 4.7 71 Fenflumizole* 50 47.2 2.8

24 Cefaclor 90 84.5 5.5 72 Fenfluramine 89 87.2 1.8

25 Cephalexin 90 85.7 4.3 73 Fenoprofen* 80 84.4 −4.4

26 Chlorambucil 87 81.2 5.8 74 Fenoximone* 53 82.3 −29.3

27 Chloramphenicol palmitate 80 74.6 5.4 75 Flecainide 95 89.3 5.7

28 Chloramphenicol 69 74.2 −5.2 76 Flucloxacillin 49 54.1 −5.1

29 Chloroquine 80 74.6 5.4 77 Flunisolide 20 25.3 −5.3

30 Chlorpromazine 32 37 −5 78 Fluocortolone 83.5 78.1 5.4

31 Chlorthalidone* 64 74.8 −10.8 79 Fluphenazine 2.7 8.7 −6

32 Cicloprolol 100 95.4 4.6 80 Flurbiprofen* 92 91.3 0.7

33 Cimetropium bromide 2 6.7 −4.7 81 Fluticasone 1 6.5 −5.5

34 Ciprofloxacin 70 75.7 −5.7 82 Fluvastatin 24 32.3 −8.3

35 Citalopram* 80 73.5 6.5 83 Gabapentin 60 64.8 −4.8

36 Clavulanate* 75 75.6 −0.6 84 Gatifloxacin* 96 88.3 7.7

37 Clofibrate 95 89.7 5.3 85 Gefitinib 60 65.1 −5.1

38 Clonazepam* 90 78.5 11.5 86 Gemifloxacin 71 76.9 −5.9

39 Clonidine* 60 70.3 −10.3 87 Glimepiride 100 94.5 5.5

40 Clorazepate 91 85.4 5.6 88 Glipizide 95 90.6 4.4

41 Cloxacillin 37 41.8 −4.8 89 Glyburide 95 100 −5

42 Clozapine 55 48.8 6.2 90 Granisetron 60 59.3 0.7

43 Codeine 55 49 6 91 Haloperidol 60 66.2 −6.2

44 Cyclophosphamide 74 68.5 5.5 92 Hydromorphone 24 18 6

45 Dapsone* 93 95.6 −2.6 93 Ibuprofen 80 85.6 −5.6

46 Delavirdine 96 90.5 5.5 94 Idarubicin 28 32.8 −4.8

47 Diazepam* 100 80.1 19.9 95 Imipramine 42 46.3 −4.3

48 Diflunisal 100 95 5 96 Irbesartan 70 66.5 3.5



QSAR Prediction of Oral Bioavailabilities Using SVM 545

2014, Vol. 58, No. 6

Table 1. Experimental and predicted values of human oral bioavailability for both training and test set compounds for SVM mode − Continued

No. Name Experimental Predicted Residual No. Name Experimental Predicted Residual

97 Isradipine 19.5 24.3 −4.8 145 Ofloxacin 97.5 91.5 6

98 Ketoprofen* 85 96.2 −11.2 146 Olmesartan 26 31.6 −5.6

99 LAAM 47 51.6 −4.6 147 Ondansetron* 62 57.7 4.3

100 Lamivudine 86 80.4 5.6 148 Oseltamivir 75 78.8 −3.8

101 Lansoprazole 80 81.7 −1.7 149 Pantoprazole 77 83.2 −6.2

102 Levofloxacin 99 93.6 5.4 150 Penicillin 22.5 27.8 −5.3

103 Levonorgestrel 87 67.1 19.9 151 Pentazocine* 18 20.7 −2.7

104 Linezolid 100 94.4 5.6 152 Phenobarbital 96 90.2 5.8

105 Lorazepam* 93 77.7 15.3 153 Phenylethylmalonamide 91 95.4 −4.4

106 Lormetazepam* 75 68.7 6.3 154 Phenytoin* 90 88 2

107 Losartan 33 28.3 4.7 155 Physostigmine 6 11.9 −5.9

108 Lovastatin* 5 14.9 −9.9 156 Pimozide 50 56 −6

109 Melphalan 71 76.6 −5.6 157 Pinacidil 57 62.4 −5.4

110 Mepindolol 82 76.6 5.4 158 Pipotiazine* 26 9.2 16.8

111 Metergoline 23 18.7 4.3 159 Pirazolac 93.5 88.9 4.6

112 Methadone 92 89.7 2.3 160 Piroxicam 100 94.3 5.7

113 Methylphenobarbital 73 78.5 −5.5 161 Pramipexole 90 90.9 −0.9

114 Methylprednisolone 82 76.5 5.5 162 Pravastatin 17 22.5 −5.5

115 Methysergide 13 17.3 −4.3 163 Prazosin 68 65.2 2.8

116 Metoclopramide* 76 78.4 −2.4 164 Prednisone 80 75.2 4.8

117 Metopimazine 19 23.9 −4.9 165 Primaquine 96 90.3 5.7

118 Mexiletine 87 92.3 −5.3 166 Primidone 92 86.9 5.1

119 Mianserin 20 24.4 −4.4 167 Procainamide 83 89 −6

120 Midalcipran 84 88.7 −4.7 168 Procyclidine* 75 87.4 −12.4

121 Midazolam 40.5 45 −4.5 169 Promethazine 25 29.9 −4.9

122 Midodrine 93 89.6 3.4 170 Propiomazine 33 38.6 −5.6

123 Milrinone 92 86.9 5.1 171 Propylthiouracil 78 73.8 4.2

124 Minocycline 97.5 92.7 4.8 172 Proscillaridin* 7 10.1 −3.1

125 Moexipril 13 16.3 −3.3 173 Protriptyline 85 46.9 38.1

126 Montelukast 73 68.1 4.9 174 Proxyphylline 100 94.4 5.6

127 Morphine 40 44.7 −4.7 175 Quinidine 75 70.6 4.4

128 Moxifloxacin 90 95.4 −5.4 176 Raloxifene 2 6.7 −4.7

129 Nadolol 34 40.3 −6.3 177 Repaglinide 56 50.5 5.5

130 Nalbuphine 11 16.2 −5.2 178 Risperidone 70 60.9 9.1

131 Naloxone 2 7 -5 179 Rizatriptan 45 51.1 −6.1

132 Naltrexone* 20 7.1 12.9 180 Rofecoxib 93 87.3 5.7

133 Naratriptan 67.5 63.4 4.1 181 Ropinirole* 55 81.3 −26.3

134 Nateglinide* 73 87.8 −14.8 182 Sildenafil 40 34 6

135 Nevirapine 93 88.1 4.9 183 Simvastatin* 5 13.3 −8.3

136 Nifedipine 50 45.6 4.4 184 Sobrerol 72 66.4 5.6

137 Nimodipine* 13 19.6 −6.6 185 Sotalol* 60 71.9 −11.9

138 Nitrazepam 78 83.1 −5.1 186 Spironolactone 25 30.4 −5.4

139 Nitrendipine 16 20.9 −4.9 187 Stavudine 82 87.8 −5.8

140 Nizatidine 70 65.2 4.8 188 Suprofen 92 86.4 5.6

141 Nomifensine 27 35.7 −8.7 189 Telenzepine 54 53.6 0.4

142 Norethindrone 64 60.2 3.8 190 Testosterone 7 22.8 −15.8

143 Norfenfluramine 85 79.4 5.6 191 Theophylline 98.8 93.1 5.7

144 Norzimelidine 66 60.6 5.4 192 Tiagabine 90 85 5
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Some of these chemicals (118) are enantiomers that had the

same oral bioavailabilities value so one of each pair of enan-

tiomer was deleted from the data set. Then the principle

component analysis (PCA) was performed on the remain-

ing 243 molecules to detecting the dissimilar (outlier)

chemical. After this step remaining molecules (216) were

considered for further investigations, which their names are

shown in Table 1. In other words, the final data is a 216×9

matrix, which corresponds to 216 chemicals and 9 descrip-

tors. The distribution of the human oral bioavailability data

for the complete data set is presented in form of a histogram

in Fig. 1. As can be seen in this figure values of bioavail-

ability (%) are acceptably distributed across the range of

values.

Data sets were splitted randomly into two separate groups;

the training and test sets, which containing, 171 and 45

members, respectively. The training set was used for the

generation of the model and the test set was used for eval-

uation of the predictive power of generated model. The

distribution of training and test set among data set space

was shown in Fig. 2, which indicates the structurally diverse

molecules possessing oral bioavailability values of a wide

range were included in both sets.

Descriptor Calculation and Selection

In order to developing a QSAR model, structural fea-

tures of molecules were converted to the numerical code,

which were named molecular descriptors. Molecular descrip-

tor is a result of standardized numerical calculation from

logical and mathematical interpretation of chemical infor-

mation, such as chemical formula, molecular structure,

interaction and etc., from a molecule.5 The molecular descrip-

tors used to search for the best model were calculated by

Table 1. Experimental and predicted values of human oral bio-
availability for both training and test set compounds for SVM mode
− Continued

No. Name Experimental Predicted Residual

193 Tiapamil 22 26.6 −4.6

194 Tocainide 89 83.5 5.5

195 Tolbutamide 85 90.2 −5.2

196 Toliprolol 90 94.9 −4.9

197 Topiramate* 70 72.7 −2.7

198 Topotecan* 32 50 −18

199 Torasemide 91 96.6 −5.6

200 Tramadol 75 69.9 5.1

201 Trandolapril 10 14.2 −4.2

202 Triamterene 51 55.5 −4.5

203 Triazolam 44 40.7 3.3

204 Trimethoprim 63 67.8 −4.8

204 Trimethoprim 63 67.8 −4.8

205 Trospium 9.6 15.6 −6

206 Valganciclovir* 59.4 60.1 −0.7

207 Venalafaxine* 45 57.8 −12.8

208 Verapamil 13.5 18.6 −5.1

209 Verdenafil 15 20.2 −5.2

210 Viloxazine 85 79.3 5.7

211 Warfarin 93 87.9 5.1

212 Zaleplon 30 52.6 −22.6

213 Ziprasidone 60 54.9 5.1

214 Zolmitriptan 40 46.1 −6.1

215 Zolpiclone 80 74.9 5.1

216 Zolpidem 72 66.9 5.1

In the above table the superscript of ((*)) indicate the test set com-

pounds.

Figure 1. Histogram representation of the distribution of human
oral bioavailability for the 216 data set compounds.

Figure 2. Data set, training set, and test set composition.
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the Dragon program6 on the basis of the minimum energy

molecular geometries optimized by the Hyperchem pack-

age7 based on AM1 semi empirical method. In addition

electronic descriptors were calculated by the MOPAC

package (Ver.6).8 During developing of models, great care

was taken in order to avoid inclusion of highly collinear

molecular descriptors. The collinear descriptors encoded

similar molecular information, therefore, it was vital to

test descriptors and eliminate those with low variation and

those which encoded similar information (descriptors with

the absolute value of Pearson correlation coefficient above

0.9). Then the most significant descriptors were selected

from the pool of remaining molecular descriptors by step-

wise multi linear variable selection method. These descriptors

were used as inputs independent variables for developing

of QSAR models.

Support Vector Machine

Support vector machine (SVM) introduced by Vapnik9

to solve the classification and nonlinear regression prob-

lems. SVM, mapped input data into the higher dimensional

feature space by the use of a kernel function then linear

regression is performed in the feature space. The kernel

functions that were used for nonlinear transformation of

the input data can be linear, polynomial or radial basis

function (RBF), which the later more commonly used in

QSAR studies.The performance of SVM depends on the

type of kernel function and parameters of C, ε and γ. The

parameter of C is regularization constant that represent the

tradeoff between minimizing the training set error and

maximizing the margin.10 The parameter of ε is sensitive

loss function and the parameters of γ are used to control

the width of radial basis function. The optimization of

these parameters was done by simultaneous changing of

these parameters and monitoring of the root mean squared

error (RMS) of SVM. The values of RMS calculate accord-

ing to the following equation:

 

(1)

where yk and  are the experimental and predicted

response and ns is the number of compounds in data set.

SVM was used as feature mapping techniques in some

QSAR studies such as, estimation of selectivity coeffi-

cients of univalent anions for anion selective electrode11

and prediction of pharmacokinetic properties of QSAR

Prediction of Oral Bioavailabilities Using SVM drugs,12

modeling of blood brain partitioning behavior of chemi-

cals13 and prediction of the retention of peptides in immo-

bilized metal affinity chromatography.14

RESULTS AND DISCUSSION

Descriptors

In this work, quantitative relationships between oral

bioavailabilities of some drugs and their molecular struc-

tural descriptors were investigated by using linear and

nonlinear feature mapping techniques. After calculations

of descriptors and prescreening of them, the method of

stepwise multiple linear regression was performed on the

remaining descriptors to select the most important of

them, which relate to the oral bioavailability of interested

drugs. These descriptors are; number of circuts (nCIR), mean

square distance index or Balaban index (MSD), number of

Al−O−Ar or Ar−O−Ar or R−O−R or R−O−c=x substruc-

ture (where R is any group linked carbon, Al and Ar are ali-

phatic and aromatic groups, respectively and X is any

electronegative atom) (O060), number of oxygen double

bonds (O058), number of R−N−R or R−N−x groups (N075),

3D MORSE signal 10/weighted by atomic masses (Mor10m),

Broto-Moreau autocorrelation of topological structure lage8

(ATS8m), leverage weighted autocorrelation of lage-6/

unweighted (HATS6u), leverage weighted autocorrelation of

lage-8/weighted by atomic van der Waals volumes (HATS8v).

RMS
yk ŷk–( )

n
s

2

i 1=∑
ns

-------------------------------=

ŷk

Table 2. Correlation matrix between selected descriptors.

Descriptors O060 O058 nCIR Mor10m HATS6u HATS8v MSD N075 ATS8m

O060 1

O058 0.297 1

nCIR −0.04 −0.033 1

Mor10m 0.087 −0.005 0.387 1

HATS6u −0.206 −0.091 0.15 −0.265 1

HATS8v 0.2 −0.056 −0.071 −0.051 −0.295 1

MSD −0.12 −0.171 −0.58 −0.379 −0.089 −0.38 1

N075 0.029 −0.052 −0.043 0.063 −0.182 0.01 −0.016 1

ATS8m 0.224 0.333 0.1 0.386 −0.581 0.24 −0.305 0.119 1
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The methods for calculations of these descriptors and the

meaning of them are explained in the Handbook of Molec-

ular Descriptors by Todeschini and Consonni.5 The inter

correlation among these descriptors are shown in Table 2.

As can be seen in this table, there is not any high cor-

relation between selected molecular descriptors. In this

study sensitivity analysis approach is used to rank descrip-

tors.15 This method used to determine how different val-

ues of an independent variable will impact a particular

dependent variable. According to the results of sensitivity

analysis on SVM model, the importance order of descrip-

tors was O058 > Mor10m > HATS8v > N075 > O060 > MSD >

nCIR > HATS6u > ATS8m. Brief explanations of these descrip-

tors that were utilized in developing of linear and nonlinear

models are found in the following. 

The descriptor of nCIR is a constitutional descriptor that

indicates the number of circuits in a molecule. Constitu-

tional descriptors reflecting the molecular composition of

a compound without connectivity and geometry informa-

tion. Descriptors of HATS8v and HATS6u are geometry

topology and atomic weight assembly (GETAWAY) type

descriptors.16 These 3D descriptors encode geometrical

information given by influence matrix, topological infor-

mation given by molecular graph and chemical informa-

tion from selected atomic properties. The next descriptor

is Mor10m that is belonged to 3D MoRSE descriptors (3D

molecule representation of structures based on electron

diffraction). 3D MoRSE descriptors are derived from infra-

red spectra simulation using a generalized scattering function

and mainly reflect the molecular size and 3D information.

Three other descriptors in the model are N075, O060 and

O058, which were belonged to atom centered fragment

(ACF) descriptors. ACF descriptors represent of a single

central atom surrounded by one or several atoms that sep-

arated from the central one by the same topological distance,

which can describe some terms of element and bonding

type in a molecule.The next molecular descriptor is mean

square distance index or Balaban index. This descriptor

introduce by Balaban in 1983 and encode the size and

compactness of a molecule.17 The final descriptor is ATSC8m,

which is a topological 2D auto correlation indices and cal-

culate by summing the products of atom weights of the

terminal atoms of all paths in the considered path length.18

All of these descriptors can encode topological and electronic

aspects of molecules, which their variation effects significantly

on the oral bioavailabilities of interested chemicals.

Modeling

Selected molecular descriptors were used as indepen-

dent variable to developing QSAR models. The methods

of MLR, ANN, SVM and RF were used as feature map-

ping methods. In order to comparison these models, stan-

dard errors (SE) and coefficient of multiple determination

(R) calculated from below equation.

(2)

and

(3)

where yi and  were the experimental, predicted and aver-

age experimental values of oral bioavailability, respectively

and n is the number of data.

The statistical parameters of these models are shown in

Table 3. As can be seen in this table the SVM model is

superior over other models in terms of standard errors (SE)

and coefficient of multiple determination (R) on training

and test set. Therefore this model is further explained in

the following.

In order to developing of a predictive QSAR based

SVM model, SVM’s parameters must be optimized. These

parameters are the kernel parameter (γ), sensitive loss

function (ε) and regularized constant (C). To finding the

optimal value for γ, it was varied in the range of 0.1 to 300

and examine the performance of SVM model to get the

minimum of RMS.The value of ε is depended on the type

of noise in the data. To find an optimal value for ε, the SE

for the SVM models with different ε values (in the range

of 0.1 to 1) were calculated and its optimum value was

selected based on minimizing of SE. The other parameter

is the regularized constant, C. If C is too large, the SVM

model will over fit to the training set; likewise, if C is too

small, deficient stress will be placed on fitting the training

set and it will cause an under fit state on the training set. In

order to find an optimal value for C, SE for the SVM mod-

SE
yi ŷi–( )

n

i 1=∑

n 1–
----------------------------=

R
2

ŷi y–( )
n 2

i 1=∑
y
i y–( )

n 2

i 1=∑
----------------------------=

ŷi

Table 3. Statistical parameters of MLR, ANN, SVM and RF models

Methods Parameters Training Test

MLR R 0.72 0.83

SE 21.07 12.26

ANN R 0.73 0.86

SE 15.96 14.76

SVM R 0.97 0.93

SE 5.70 10.46

RF R 0.97 0.78

SE 5.58 12.45
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els with different C values were calculated and the best

value for C was selected based on minimizing of SE.

According to this procedure, the optimal values for these

parameters were C = 10, γ = 7 and ε = 0.1. Then the devel-

oped SVM model was used for prediction of oral bio-

availabilities of chemicals in test set as well as training set.

These values are shown in Table 1. The standard error of

this calculation are 5.70 and 10.46 for training and test set

respectively. The predicted values of oral bioavailability

were plotted versus their experimental values in Fig. 3

which indicate the good agreement between these values

(R2
train = 0.95, R2

test = 0.86). The residuals of this calcu-

lation were plotted in Fig. 4. The random distribution of

the residuals around the zero line indicated that there were

not any systematic errors in this model.

In order to evaluate the robustness and predictive power

of SVM model, the leave eleven out cross validation test

was performed and the values of the cross validation cor-

relation coefficient (Q2) and standardized predicted error

sum of square (SPRESS) were calculated,19 according to

the following formulas:

(4)

and

(5)

In the above equations k is the number of independent

variables in regression equation. The obtained Q2 and

SPRESS were 0.603 and 7.902, respectively, that indicated

the robustness of developed SVM model. Y randomiza-

tion test is another validation approach that must be used

to investigate chance correlation among data matrix. In

order to performing this test, dependent variable is ran-

domly scrambled and a new model is developed using the

original independent variables matrix. The average value

of R after 30 times Y scrambling was 0.056, which revealed

that the proposed model is well founded and not just the

result of chance correlations.

Also the domain of applicability of developed QSAR

model was investigated. The applicability domain (AD)

indicate the scope of model and define the model limitations

with respect to structural domain and response space.20

Through the leverage approach, it is possible to verify

whether a new chemical will lie within the structural model

domain (in this case predicted data can be considered as

interpolated and with reduced uncertainty, hence reliable)

or outside the domain (so predicted data are extrapolated

by the model and must be considered to have increased

uncertainty, hence unreliable). Leverage, hi, is defined as: 

(i = 1,..., n) (6)

where xi is the descriptor row vector of the query com-

pound and X is the n × k−1 matrix of k model descriptor

values for n training set compounds. The superscript T

refers to the transpose of the matrix/vector. To visualize

the AD of QSAR models, the standardized residuals were

plotted against leverages in Fig. 5 (William plot). In this

plot, the horizontal and vertical lines delineate the limits of

acceptable values; the former for the Y outliers (i.e. compounds

Qlmo

2
1

ŷi y
i–( )
2

∑

y
i y–( )

2

∑
-----------------------–=

SPRESS
ŷi y

i–( )
2

∑

n k– 1–
-----------------------=

hi xi
T
X

T
X( )

1–

Xi=

Figure 3. Plot of predicted versus experimental oral bioavail-
ability.

Figure 4. Plot of residuals versus experimental oral bioavail-
ability.
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with standardized residuals greater than 3 standard devi-

ation units) and the latter for X outliers, respectively. The

limit of X outliers is determined by their warning hat val-

ues (h*) calculated by 3p/n, where p is the number of

model variable plus one (k+1), and n is the number of

training compounds. As can be seen from this figure, all

predictions were reliable, except for number 7, 14, 19, 191

and 202 in training set which is not within the cut off value

of h* = 0.175 and the number of 12, 103, 173 and 212 in

William plot seems to be outlier.

Moreover, diversity analysis was done on the dataset to

make sure the structures of the training or test sets could

represent those of the whole ones.21 In this way, a data-

base of n compounds generated from m highly correlated

chemical descriptors {xj}
m
j=1 was considered. Each com-

pound, Xi, is represented as following vector:

Xi = (xi1, xi2, xi3,..., xij,…xim) for i = 1,2,…, n (7)

where xi,j denotes the value of descriptor j of compound i.

The collective data base x = {xj}
n
i=1 is represented by an

n × m matrix of X:

X = (X1, X2,..., Xn)
T = (8)

where the superscript T denotes the vector/matrix trans-

pose. A distance score for two different compounds Xi and

Xj (dij) can be measured by the Euclidean distance norm

based on the compound descriptors:

(9)

The mean distances of one sample to the remaining ones

were computed as follows: 

 i = 1,2,…, n (10)

Then the mean distances were normalized within the

interval of zero to one and the resulting values were plot-

ted against oral bioavailability (Fig. 6). As can be seen from

this figure, the structures of the compounds are diverse for

both training and test sets. Distribution of selected descriptors

for SVM model are shown in the radar chart (Fig. 7). A

 

dij Xi Xj– Xik Xjk–( )
m 2

k 1=∑= =

di
d

n

j 1= ij∑

n 1–
----------------=

Figure 5. The plot of standardized residuals versus leverage
(William plot).

Figure 6. The results of diversity test.

Figure 7. Radar plot of the distribution of selected descriptors
used in QSAR modeling.
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radar chart is a graphical method that displays multivar-

iate data in the form of a two dimensional chart with sev-

eral quantitative variables represented on axis starting

from the same point. The purpose of a radar chart is to

compare m options across n parameters so that audience

can be convinced that option A is better than say option B.

Radar charts are often used when neighboring variables

are unrelated, creating spurious connections so in this

work instead of use a column chart for show independent

variables, we illustrated them graphically because column

chart might look cluttered. Each of the independent vari-

ables are in individual axes and each line is drawn con-

necting the data values for each drug.

Comparison between statistical parameter of developed

SVM model with these obtained by other researchers are

shown in Table 4. As can be seen in this table over devel-

oped SVM model is superior over other models.

CONCLUSION

Multiple linear regression, artificial neural network,

support vector machine and random forest methods were

used as feature mapping techniques for modeling and pre-

diction of oral bioavailabilities of some drugs from their

molecular structural descriptors. The results show that the

SVM model exhibit reliable statistical and prediction per-

formance over other models. The structural descriptors

resulted from the stepwise multi linear variable selection

method can be used to guide chemists on how to design

new drugs. The results of this study revealed that quan-

titative structure-activity relationship approach has a good

applicability for accurate prediction of oral bioavailability.
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