Browse > Article
http://dx.doi.org/10.5012/jkcs.2014.58.6.543

Quantitative Structure Activity Relationship Prediction of Oral Bioavailabilities Using Support Vector Machine  

Fatemi, Mohammad Hossein (Department of Chemistry, University of Mazandaran)
Fadaei, Fatemeh (Department of Chemistry, University of Mazandaran)
Publication Information
Abstract
A quantitative structure activity relationship (QSAR) study is performed for modeling and prediction of oral bioavailabilities of 216 diverse set of drugs. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regression (MLR), artificial neural network (ANN), support vector machine (SVM) and random forest (RF) techniques. Comparison between statistical parameters of these models indicates the suitability of SVM over other models. The root mean square errors of SVM model were 5.933 and 4.934 for training and test sets, respectively. Robustness and reliability of the developed SVM model was evaluated by performing of leave many out cross validation test, which produces the statistic of $Q^2_{SVM}=0.603$ and SPRESS = 7.902. Moreover, the chemical applicability domains of model were determined via leverage approach. The results of this study revealed the applicability of QSAR approach by using SVM in prediction of oral bioavailability of drugs.
Keywords
Quantitative structure activity relationship; Support vector machine; Multiple linear regressions; Oral bioavailability; Molecular descriptors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; WILEY-VCH Verlag GmbH: 2000, Vol. 11, p 516.
2 The Dragon Website. http://www.disat.unimib.it/chem.
3 Stewart, J. P. P. MOPAC 6.0, Quantum Chemistry Program Exchange, vol. 455; India University: Bloomington, 1989.
4 Cortes, C.; Vapnik, V. J. M. l. R. 1995, 20, 273.
5 Bennett, K. P.; Campbell, C. J. ACM. SIGKDD. 2000, 2, 1.
6 Fatemi, M. H.; Dorostkar, F.; Ghorbannezhad, Z. J. Monatsh. Chem. Chem. Mon. 2011, 142, 1061.   DOI
7 Yang, S. Y.; Huang, Q.; Li, L. L.; Ma, C. Y.; Zhang, H.; Bai, R.; Teng, Q. Z.; Xiang, M. L.; Wei, Y. Q. J. Artif. Intell. Med. 2009, 46, 155.   DOI   ScienceOn
8 Golmohammadi, H.; Dashtbozorgi, Z.; Acree Jr., W. E. J. Pharm. Sci. 2012, 47, 421.
9 Kermani, B.; Kozlov, I.; Melnyk, P.; Zhao, C.; Hachmann, J.; Barker, D.; Lebl, M. J. Sens. Actuators, B. 2007, 125, 149.   DOI   ScienceOn
10 Consonni, V.; Todeschini, R.; Pavan, M. J. Chem. Inf. Comput. Sci. 2002, 42, 682.   DOI   ScienceOn
11 Balaban, A. T, 1983. J. Pure & Appl. Chem. 1983, 55, 199.
12 Broto, P.; Moreau, G.; Vandycke, C. J. Med. Chem. 1984, 19, 66.
13 Gramatica, P. J. QSAR. Comb. Sci. 2007, 26, 694.   DOI   ScienceOn
14 Tropsha, A.; Gramatica, P.; Gombar, V. K. J. QSAR. Comb. Sci. 2003, 22, 69.   DOI   ScienceOn
15 Zhu, J., Wang, J.; Yu, H.; Li, Y.; Hou, T. Chem. High Throughput Screening. 2011, 14, 362.   DOI   ScienceOn
16 Turner, J. V.; Glass, B. D.; Agatonovic Kustrin, S. J. Anal. Chim. Acta. 2003, 485, 89.   DOI   ScienceOn
17 Wang, J.; Krudy, G.; Xie, X. Q.; Wu, C.; Holland, G. J. Chem. Inf. Model. 2006, 46, 2674.   DOI   ScienceOn
18 Yasri, A.; Hartsough, D. J. Chem. Inf. Comput. Sci. 2001, 41, 1218.   DOI   ScienceOn
19 Moda, T. L.; Montanari, C. A.; Andricopulo, A. D. J. Bioorg. Med. Chem. 2007, 15, 7738.   DOI
20 Andrews, C. W.; Bennett, L.; Lawrence, X. Y. J. Pharm. Res. 2000, 17, 639.   DOI   ScienceOn
21 Turner, J. V.; Maddalena, D. J.; Agatonovic-Kustrin, S. J. Pharm. Res. 2004, 21, 68.   DOI   ScienceOn
22 Hyper Chem Release 7.0 for windows; Hypercube, Inc., 2002.
23 Kumar, R.; Sharma, A.; Varadwaj, P. K. J. Nat. Sci. Bio. Med. 2011, 2, 168.   DOI   ScienceOn
24 Fatemi, M. H.; Gharaghani, S.; Mohammadkhani, S.; Rezaie, Z. J. Electrochim. Acta. 2008, 53, 4276.   DOI   ScienceOn
25 Maldonado, A. G.; Doucet, J.; Petitjean, M.; Fan, B.T. J. Mol. Diversity. 2006, 10, 39.   DOI