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Least-Squares Support Vector Machine for Regression 

Model with Crisp Inputs-Gaussian Fuzzy Output 

Changha Hwang1)

Abstract

Least-squares support vector machine (LS-SVM) has been very 
successful in pattern recognition and function estimation problems for 
crisp data. In this paper, we propose LS-SVM approach to evaluating 
fuzzy regression model with multiple crisp inputs and a Gaussian fuzzy 
output. The proposed algorithm here is model-free method in the sense 
that we do not need assume the underlying model function. Experimental 
result is then presented which indicate the performance of this algorithm.
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1. Introduction

In all cases of fuzzy regression, the linear regression is recommended for 

practical situations when decisions often have to be made on the basis of 

imprecise and/or partially available data. Many different fuzzy regression 

approaches have been proposed. Fuzzy regression, as first developed by Tanaka et 

al.(1982) in a linear system, is based on the extension principle. Similar to 

traditional least-squares, Diamond(1988) defined a distance on a triangular fuzzy 

number space to measure the best fit for the regression model to observed data, 

and then derived regression parameters based on the distance. Xu(1991) presented 

a distance on a fuzzy number space by the integral of distance of every level set. 

Xu and Li(2001) discussed the problem of multidimensional least-squares fitting. 

Using Xu's distance on a fuzzy number space, Hong et al.(2004) proposed a ridge 

estimation method of fuzzy regression models with multiple crisp inputs and a 

Gaussian fuzzy output. Yang and Ko(1996) derived the distance for two Gaussian 

fuzzy numbers, which is different from Xu's. In this paper, using Yang and Ko's 
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distance, we propose least-squares support vector machine(LS-SVM) approach to 

evaluating fuzzy regression models with multiple crisp inputs and a Gaussian 

fuzzy output. The details of LS-SVM were illustrated in Suykens et al.(2002). 

Another direction of SVM approach to fuzzy regression was illustrated in Hong 

and Hwang(2003).

2. Distance of Gaussian Fuzzy Numbers

In this section, we review linear operations and distance of Gaussian fuzzy 

number, which are needed to illustrate LS-SVM for fuzzy regression models. 

These are taken from Xu and Li(2001) and Yang and Ko(1996). We first illustrate 

Gaussian fuzzy number. Let R  be the real number set. 

Definition 1. A fuzzy number Ã  is said to be a Gaussian fuzzy number if its 

membership function can be expressed as

Ã (x ) = exp[-( x- aσ )
2

] ,  x∈R (σ > 0 )
and we write Ã = (a , σ ) . Denote by Ν  the set of all Gaussian fuzzy numbers.

We next illustrate Zadeh's extension principle for the linear operations of 

Gaussian fuzzy number.

Theorem 1. Let Ã = (a , σ )  and B̃= (b , τ )  be Gaussian fuzzy numbers. 

Then

(1) t Ã = ( t a , tσ ) ( t > 0 ) ,

(2) Ã+ B̃ = (a + b , σ + τ ) .

Theorem 2. Let Ã = (a , σ )  and B̃= (b , τ )  be Gaussian fuzzy numbers. 

Then the distance d 2( Ã , B̃ )  for any two Gaussian fuzzy numbers is defined as 

follows:

  d 2( Ã , B̃ ) = (a-b) 2+( (a- π
2
σ)-(b- π

2
τ ))

2

+( (a+ π
2
σ )-(b+ π

2
τ ))

2

  

            = 3 (a-b ) 2+ π
2
(σ - τ )

2 .

Note that the distance d ( Ã , B̃ )  here is similar to the squared Hausdorff-like 

distance proposed by Albrecht(1992). 

3.  LS-SVM for Fuzzy Regression

In this section, we will modify the underlying idea of LS-SVM for the purpose 

of deriving the convex optimization problems for fuzzy linear and nonlinear 

regression models with multiple crisp inputs and a Gaussian fuzzy output. The 
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basic idea of LS-SVM gives computational efficiency in finding solutions of fuzzy 

regression models particularly for multivariate case. 

Suppose that we are given training data { ( x i, Ỹ i ) , i= 1,…,m } ⊂R
n×Ν , 

where x i∈R
n  and Ỹ i= (y i , s i )∈Ν . Xu and Li(2001) considered the following 

model 

Ỹ = Ã 0 + Ã 1x 1 + … + Ã nx n,  Ã j= (a j , σ j ) , j= 0, 1, …, n      (1)  

and considered the least-squares optimization problem as follows:

  min M ( Ã 0, Ã 1, … , Ã n ) = ∑
m

i= 1
d 2 ( Ã 0 + Ã 1x i1 + … + Ã nx in, Ỹ i ) .   (2) 

Therefore, according to Theorem 2, the least-squares problem (2) can be 

rewritten as  

min M ( Ã 0, Ã 1, …, Ã n ) = 3∑
m

i=1
( a

t x i+a 0-y i )
2
+
π
2 ∑

m

i=1
( σ

t x i+σ0- s i )
2,

(3) 

where x i= (x i1, …,x in )
t , a = (a 1, …, an )

t  and σ = (σ 1, …, σ n )
t . Here, 

the superscript t  denotes the transpose of matrix. Throughout this paper, we 

assume that x i j > 0 ( i=1,…,m , j=1,…,n )  by simple translation of all data. 

We now modify this idea for the purpose of deriving LS-SVM algorithm for 

fuzzy linear and nonlinear regression model. We define Ã = ( Ã 1,…, Ã n )
t , and 

then we have ∥ Ã∥2= 3∥a∥2+
π
2
∥σ∥2 . Hence, we arrive at the following 

convex optimization problem for model (1) as follows: 

min 
1
2
∥ Ã∥2+

3C
2 ∑

m

i= 1
ξ 21 i+

πC
4 ∑

m

i= 1
ξ 22 i , 

under the equality constraints 

y i = a
t x i+a 0+ξ 1 i , s i = σ

t x i+σ0+ξ 2 i , i= 1, …,m .

Introducing Lagrange multipliers α 1 i  and α 2 i , i= 1, …,m , we construct a 

Lagrange function as follows: 

L =
1
2
∥ Ã∥2+

3C
2 ∑

m

i=1
ξ 21 i+

πC
4 ∑

m

i=1
ξ 22 i-∑

m

i=1
α 1 i ( a

t x i+a 0+ξ 1 i- y i )

          -∑
m

i=1
α 2 i ( σ

t x i+σ0+ξ 2 i- s i ) .                                  

Then, the conditions for optimality are given by

                 ∂L

∂a
= 0 → a =

1
3 ∑

m

i=1
α 1 i x i

                 ∂L
∂a 0

= 0 → ∑
m

i= 1
α 1 i = 0
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                 ∂L

∂σ
= 0 → σ =

2
π ∑

m

i=1
α 2 i x i

                 ∂L
∂σ 0

= 0 → ∑
m

i= 1
α 2 i = 0

                 ∂L
∂ξ 1 i

=0 → ξ 1 i =
1
3C
α 1 i, i=1,…,m

                 ∂L
∂ξ 2 i

=0 → ξ 2 i =
2
πC
α 2 i, i=1,…,m

                 ∂L
∂α 1 i

=0 → a t x i+a 0+ξ 1 i= y i, i=1,…,m

                 ∂L
∂α 2 i

=0 → σ
t x i+σ0+ξ 2 i= s i, i=1,…,m

with solutions 

a =
1
3 ∑

m

i=1
α 1 i x i , σ =

2
π ∑

m

i=1
α 2 i x i

and 

ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

0 0 1 t 0 t

0 0 0 t 1 t

1 0
1
3
Ω+

1
3C
I O

0 1 O
2
π
Ω+

2
πC
I

ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳︳︳

a 0
σ 0
α 1
α 2

=

ꀎ

ꀚ

︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳

0
0
y
s

with α 1= (α 11,…,α 1m )
t , α 2= (α 21,…,α 2m )

t , 0= (0,…,0 ) t , 

1= (1,…,1 ) t , m×m  zero matrix O , m×m  identity matrix I , m×m  matrix 

Ω  of Ω ij= x
t
i x j , y = (y 1,…,ym )

t  and s =( s 1,…,sm )
t . 

Hence, the prediction Ỹ=( ŷ , ŝ )  given by the LS-SVM procedure on the new 

unlabeled example x  is 

(
1
3 ∑

m

i=1
α 1 i x

t
i x +a 0,

2
π ∑

m

i=1
α 2 i x

t
i x +σ0 ) . 

Similar to Xu and Li(2001), the goodness of fit of observed value (y i, s i )  and 

the estimated value ( ŷ i, ŝ i )  is defined by 

exp

ꀎ

ꀚ

︳︳︳︳︳︳︳︳
-

ꀌ

ꀘ

︳︳︳︳︳︳︳︳

1
3 ∑

m

i=1
α 1 i x

t
i x +a 0 - y i

2
π ∑

m

i=1
α 2 i x

t
i x +σ0+ s i

ꀍ

ꀙ

︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳
.                 (4)

See for details Xu and Li(2001). 

Notice that the condition Rank (X )= n+1  should hold in Xu and Li(2001). 

Here, X  denotes the design matrix consisting of m  input vectors. If Rank (X )



Least-Squares Support Vector Machine for Regression 

Model with Crisp Inputs-Gaussian Fuzzy Output 
511

< n+1 , or in other situations where numerical stability problems occur, we can 

use LS-SVM.

Next, we will study LS-SVM to be used in estimating fuzzy nonlinear 

regression model. In contrast to fuzzy linear regression, there have been only a 

few articles on fuzzy nonlinear regression. In this paper we treat fuzzy nonlinear 

regression, without assuming the underlying model function. This could be 

achieved by simply preprocessing input patterns x i  by a map Φ : R
n → E  into 

some feature space E  and then applying LS-SVM linear regression algorithm. 

The details are illustrated in Suykens et al.(2002).

First notice that the only way in which the data appears in the training problem 

is in the form of dot products x ti x j . The algorithm would only depend on the 

data through dot products in E , i.e. on functions of the form Φ ( x i )
tΦ ( x j ) . 

Hence it suffices to know and use K ( x i, x j )=Φ ( x i )
tΦ ( x j )  instead of Φ (⋅)  

explicitly. The only difference between LS-SVMs for linear and nonlinear function 

estimations is the use of mapping function Φ . The well used kernels for 

regression problem are given below.

K ( x , y ) = ( x
t y + 1 )

p
,  K ( x , y ) = e

-
|x - y | 2

2 σ 2 . 

Here, p  and σ
2  are kernel parameters. In final, the fuzzy nonlinear LS-SVM 

regression solution is given by

(
1
3 ∑

m

i=1
α 1 i K ( x i, x )+a 0,

2
π ∑

m

i=1
α 2 i K ( x i, x )+σ 0 ) .

Similar to the linear case (4), we can define the goodness of fit for fuzzy 

nonlinear regression.

 

4. Numerical Example and Conclusions

In this section, one example is considered to verify the effectiveness of the 

proposed LS-SVM procedure for Xu and Li's fuzzy model. We consider nonlinear 

regression analysis only, since the linear case is analogous. As an illustration of 

this algorithm, we consider a toy problem involving one crisp input. The data is 

taken from Gunn(1998), except s i . The values of s i  are assumed by the author. 

The data are given in Table 1. 

According to Gunn(1998), the nonlinear regression model is appropriate for the 

original crisp data. Hence we apply fuzzy nonlinear regression model to this data 

set. Here, we use Gaussian kernel for estimating nonlinear regression model. We 

have used leave-one-out(LOO) cross-validation based on the sum of squares in 

the optimization problem (3) to determine an optimal combination of C  and σ , 
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which are C= 140  and σ= 2.6 . 

The goodness of fit of observed value (y i, s i )  and the estimated value 

( ŷ i, ŝ i )  is reported in Table 1. The goodness of fit of every (y i, s i )  and 

( ŷ i, ŝ i )  are all greater than 0.9. This implies that the fitted result of our 

algorithm very good.

<Table 1> Data, Estimated values and Goodness of Fit

x i (y i , s i ) ( ŷ i, ŝ i ) Goodness of Fit

1 (-1.6, 1.0) (-1.5752, 1.0035) 0.9998

3 (-1.8, 1.0) (-1.8617, 1.0253) 0.9991

4 (-1.0, 1.0) (-0.8625, 0.9401) 0.9950

5.6 (1.2, 1.0) (1.1128, 1.0655) 0.9982

7.8 (2.2, 2.0) (2.1866, 1.9483) 1.0000

10.2 (6.8, 2.0) (7.2221, 2.0502) 0.9892

11.0 (10.0, 2.0) (9.3373, 1.9868) 0.9728

11.5 (10.0, 2.0) (10.1871, 1.9755) 0.9978

12.7 (10.0, 2.0) (10.0533, 2.0048) 0.9998

<Fig. 1> Fuzzy nonlinear regression model

Fig. 1 illustrates results for fuzzy nonlinear model. The asterisks represent the 

observed center values. The dots represent 0.5 level sets of observed Gaussian 
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fuzzy numbers. The solid curve explains the fitted regression curve for center. 

The two dotted curves explain the fitted curves for 0.5 level sets of Gaussian 

fuzzy numbers. As seen from Figure 1, the proposed algorithm performs well for 

fuzzy nonlinear regression model.  

From the example we can realize that the proposed algorithms derive the 

satisfying solutions and are an attractive approach to modelling fuzzy data. The 

main formulation results in solving a simple matrix inversion problem. Hence, this 

is not a computationally expensive way.
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