• Title/Summary/Keyword: multiple sensor network

Search Result 362, Processing Time 0.032 seconds

Study of Local Area Weather Condition Monitoring System in WSN (WSN기반의 국지적 기상모니터링 시스템 고찰)

  • Chung, Wan-Young;Jung, Sang-Joong;Kim, Jong-Jin;Kwon, Tae-Ha
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.271-276
    • /
    • 2009
  • An local area weather condition monitoring system to minimize many disasters from the sudden change of weather condition in local and mountain area is proposed. Firstly, the comparison of present state of the related monitoring systems and the possibility of realization with some merits are investigated. Moreover, this paper present direction of local area weather condition monitoring system based on integration of wireless sensor network and CDMA network following some case study. Through the efficient integration of both networks, the measured weather condition data from sensors can be transmitted to the server or mobile to monitor with high reliability. The proposed monitoring system will guide new type of project in wireless sensor network and support alarm service of the sudden change of weather condition to mobile user from central official regulations.

  • PDF

An Enhanced DESYNC Scheme for Simple TDMA Systems in Single-Hop Wireless Ad-Hoc Networks (단일홉 무선 애드혹 네트워크에서 단순 TDMA 시스템을 위한 DESYNC 알고리즘 개선 방안)

  • Hyun, Sanghyun;Lee, Jeyul;Yang, Dongmin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.9
    • /
    • pp.293-300
    • /
    • 2014
  • TDMA(Time Division Multiple Access) is a channel access scheme for shared medium networks. The shared frequency is divided into multiple time slots, some of which are assigned to a user for communication. Techniques for TDMA can be categorized into two classes: synchronous and asynchronous. Synchronization is not suitable for small scale networks because it is complicated and requires additional equipments. In contrast, in DESYNC, a biologically-inspired algorithm, the synchronization can be easily achieved without a global clock or other infrastructure overhead. However, DESYNC spends a great deal of time to complete synchronization and does not guarantee the maximum time to synch completion. In this paper, we propose a lightweight synchronization scheme, C-DESYNC, which counts the number of participating nodes with GP (Global Packet) signal including the information about the starting time of a period. The proposed algorithm is mush simpler than the existing synchronization TDMA techniques in terms of cost-effective method and guarantees the maximum time to synch completion. Our simulation results show that C-DESYNC guarantees the completion of the synchronization process within only 3 periods regardless of the number of nodes.

Load-Balancing Rendezvous Approach for Mobility-Enabled Adaptive Energy-Efficient Data Collection in WSNs

  • Zhang, Jian;Tang, Jian;Wang, Zhonghui;Wang, Feng;Yu, Gang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1204-1227
    • /
    • 2020
  • The tradeoff between energy conservation and traffic balancing is a dilemma problem in Wireless Sensor Networks (WSNs). By analyzing the intrinsic relationship between cluster properties and long distance transmission energy consumption, we characterize three node sets of the cluster as a theoretical foundation to enhance high performance of WSNs, and propose optimal solutions by introducing rendezvous and Mobile Elements (MEs) to optimize energy consumption for prolonging the lifetime of WSNs. First, we exploit an approximate method based on the transmission distance from the different node to an ME to select suboptimal Rendezvous Point (RP) on the trajectory for ME to collect data. Then, we define data transmission routing sequence and model rendezvous planning for the cluster. In order to achieve optimization of energy consumption, we specifically apply the economic theory called Diminishing Marginal Utility Rule (DMUR) and create the utility function with regard to energy to develop an adaptive energy consumption optimization framework to achieve energy efficiency for data collection. At last, Rendezvous Transmission Algorithm (RTA) is proposed to better tradeoff between energy conservation and traffic balancing. Furthermore, via collaborations among multiple MEs, we design Two-Orbit Back-Propagation Algorithm (TOBPA) which concurrently handles load imbalance phenomenon to improve the efficiency of data collection. The simulation results show that our solutions can improve energy efficiency of the whole network and reduce the energy consumption of sensor nodes, which in turn prolong the lifetime of WSNs.

RF Energy Transfer Testbed Based on Off-the-shelf Components for IoT Application (IoT 응용을 위한 RF 에너지 전송 테스트베드 구현 및 실험)

  • Aziz, Arif Abdul;Tribudi, Dimas;Ginting, Lorenz;Rosyady, Phisca Aditya;Setiawan, Dedi;Choi, Kae Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.1912-1921
    • /
    • 2015
  • In this paper, we introduce a testbed for testing the RF energy transfer technology in the Internet of Things (IoT) environment, and provide experimental results obtained by using the testbed. The IoT environment considered in this paper consists of a power beacon, which is able to wirelessly transfers energy via microwave, and multiple sensor nodes, which makes use of the energy received from the power beacon. We have implemented the testbed to experiment the RF energy transfer in such IoT environment. We have used off-the-shelf hardware components to build the testbed and have made the tesbed controlled by software so that various energy and data transmission protocol experiments can easily be conducted. We also provide experimental results and discuss the future research direction.

A Design of the Ontology-based Situation Recognition System to Detect Risk Factors in a Semiconductor Manufacturing Process (반도체 공정의 위험요소 판단을 위한 온톨로지 기반의 상황인지 시스템 설계)

  • Baek, Seung-Min;Jeon, Min-Ho;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.804-809
    • /
    • 2013
  • The current state monitoring system at a semiconductor manufacturing process is based on the manually collected sensor data, which involves limitations when it comes to complex malfunction detection and real time monitoring. This study aims to design a situation recognition algorithm to form a network over time by creating a domain ontology and to suggest a system to provide users with services by generating events upon finding risk factors in the semiconductor process. To this end, a multiple sensor node for situational inference was designed and tested. As a result of the experiment, events to which the rule of time inference was applied occurred for the contents formed over time with regard to a quantity of collected data while the events that occurred with regard to malfunction and external time factors provided log data only.

Control Signal Computation using Wireless Channel (무선 채널을 활용한 제어 신호 컴퓨팅)

  • Jung, Mingyu;Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.986-992
    • /
    • 2021
  • To stabilize closed-loop wireless control systems, the state-of-the-art approach receives the individual sensor measurements at the controller and then sends the computed control signal to the actuators. We propose an over-the-air controller scheme where all sensors attached to the plant transmit scaled sensing signals simultaneously to the actuator, and the actuator then computes the feedback control signal by scaling the received signal. The over-the-air controller essentially adopts the over-the-air computation concept to compute the control signal for closed-loop wireless control systems. In contrast to the state-of-the-art sensor-to-controller and controller-to-actuator communication approach, the over-the-air controller exploits the superposition properties of multiple-access wireless channels to complete the communication and computation of a large number of sensing signals in a single communication resource unit. Therefore, the proposed scheme can obtain significant benefits in terms of low actuation delay and low resource utilization with a simple network architecture that does not require a dedicated controller.

Technical Issues and Solutions for Developing IoT Applications (IoT 애플리케이션 개발의 기술적 이슈 및 솔루션)

  • Shin, Dong Ha;Han, Seung Ho;La, Hyun Jung;Kim, Soo Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.3
    • /
    • pp.99-110
    • /
    • 2015
  • Internet-of-Things(IoT) is the computing paradigm converged with different technologies, where diverse devices are connected via the wireless network, acquire environmental information from their equipped sensors, and actuated. IoT applications typically provide smart services to users by interacting with multiple devices connected to the network and are designed by integrating multiple technologies such as sensor network, communication technologies, and software engineering. Moreover, since the concept of IoT has been introduced recently, most of the researches are in the beginning step, which is too early to be practically applied. Due to these facts, developing IoT application results in unconventional technical challenges which have not been observed in typical software applications. And, it is not straightforward to apply conventional project guidelines to IoT application development projects. Hence, there can be many difficulties to successfully complete the projects. Therefore, for successful completion of the projects, we analyze technical challenges occurring in all phases of the project lifecycle, i.e. project preparation stage and development stage. And, we propose the effective solutions to overcome the issues. To verify identified issues and presented solutions, we present the result of applying the solutions to an IoT application development. Through the case study, we evaluate how reasonable the unconventional technical issues are generated and analyze effectiveness of applying the solutions to the application.

Implementation of a Point-to-Multipoint Wireless Communication System Based on The Bluetooth (블루투스 기반 점 대 다중점 무선 통신시스템의 구현)

  • Bae, Jin-Seop;Kang, Seog-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1921-1927
    • /
    • 2009
  • In this paper, a point-to-multipoint wireless communication system based on Bluetooth specifications, which is possibly applied to very large vessels, is implemented and analyzed. Here, a communication network is composed of a slave Bluetooth module connected to the task computer and multiple master Bluetooth modules equipped with a sensor. And exploiting the point-to-multipoint data communication among the Bluetooth modules, a surveillance system that recognizes and controls a variety of emergency situations happened on a large vessel is implemented. It is, therefore, considered that the wireless communication system implemented in this paper is possibly exploited a basic technology for the digital shipbuilding of the next generation.

Design of efficient location system for multiple mobile node in the indoor wireless sensor network (실내 무선 센서네트워크에서의 효과적인 다중 이동 노드 위치인식 시스템 설계)

  • Kim Ki-Hyeon;Ha Bong-Soo;Kim Tae-Hwan;Lee Yong-Doo;Hong Won-Kee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.397-399
    • /
    • 2005
  • 무선 센서노드를 활용한 다양한 네트워크 설계 기술은 실생활의 각종 정보 수집에서부터 환경 모니터링까지 폭넓은 활용범위를 바탕으로 저전력 노드 설계 기술, 노드간 라우팅 프로토콜, 초소형 운영체제 및 미들웨어기술 등 관련 연구가 활발히 수행되고 있으며, 실내 센서네트워크에 분포된 노드의 절대위치를 측정하는 위치인식 시스템은 노드의 이동성, 다수성 그리고 환경의 제약성으로 인해 이를 보완할 시스템이 요구되고 있다. 이에 본 논문에서는 고정 센서노드의 배치밀도에 따라 위치정보를 선별적으로 처리하는 위치데이터 처리기와 다중 위치데이터의 발생을 원천적으로 차단하는 노드간 라우팅 기법을 통해, 센서노드의 이동성과 다중성을 효과적으로 보완하는 실내 이동객체 위치인식 시스템을 설계하고 서비스 구현을 위한 센서네트워크 플랫폼을 제안한다.

  • PDF

Dynamic Service Composition and Development Using Heterogeneous IoT Systems

  • Ryu, Minwoo;Yun, Jaeseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.91-97
    • /
    • 2017
  • IoT (Internet of Things) systems are based on heterogeneous hardware systems of different types of devices interconnected each other, ranging from miniaturized and low-power wireless sensor node to cloud servers. These IoT systems composed of heterogeneous hardware utilize data sets collected from a particular set of sensors or control designated actuators when needed using open APIs created through abstraction of devices' resources associated to service applications. However, previously existing IoT services have been usually developed based on vertical platforms, whose sharing and exchange of data is limited within each industry domain, for example, healthcare. Such problem is called 'data silo', and considered one of crucial issues to be solved for the success of establishing IoT ecosystems. Also, IoT services may need to dynamically organize their services according to the change of status of connected devices due to their mobility and dynamic network connectivity. We propose a way of dynamically composing IoT services under the concept of WoT (Web of Things) where heterogeneous devices across different industries are fully integrated into the Web. Our approach allows developers to create IoT services or mash them up in an efficient way using Web objects registered into multiple standardized horizontal IoT platforms where their resources are discoverable and accessible. A Web-based service composition tool is developed to evaluate the practical feasibility of our approach under real-world service development.