• Title/Summary/Keyword: multiple regression technique

Search Result 278, Processing Time 0.032 seconds

VISIBLE/NEAR-IR REFLECTANCE SPECTROSCOPY FOR THE CLASSIFICATION OF POULTRY CARCASSES

  • Chen, Yud-Ren
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.403-412
    • /
    • 1993
  • This paper presents the progress of the development of a nondestructive technique for the classification of normal, septicemic , and cadaver poultry carcasses by the Instrumentation and Sensing Laboratory at Beltsville, Maryland, U.S.A. The Sensing technique is based on the diffuse reflectance spectroscopy of poultry carcasses.

  • PDF

Development of a Virtual Reference Station-based Correction Generation Technique Using Enhanced Inverse Distance Weighting

  • Tae, Hyunu;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 2015
  • Existing Differential GPS (DGPS) pseudorange correction (PRC) generation techniques based on a virtual reference station cannot effectively assign a weighting factor if the baseline distance between a user and a reference station is not long enough. In this study, a virtual reference station DGPS PRC generation technique was developed based on an enhanced inverse distance weighting method using an exponential function that can maximize a small baseline distance difference due to the dense arrangement of DGPS reference stations in South Korea, and its positioning performance was validated. For the performance verification, the performance of the model developed in this study (EIDW) was compared with those of typical inverse distance weighting (IDW), first- and second-order multiple linear regression analyses (Planar 1 and 2), the model of Abousalem (1996) (Ab_EXP), and the model of Kim (2013) (Kim_EXP). The model developed in the present study had a horizontal accuracy of 53 cm, and the positioning based on the second-order multiple linear regression analysis that showed the highest positioning accuracy among the existing models had a horizontal accuracy of 51 cm, indicating that they have similar levels of performance. Also, when positioning was performed using five reference stations, the horizontal accuracy of the developed model improved by 8 ~ 42% compared to those of the existing models. In particular, the bias was improved by up to 27 cm.

Empirical Study on the Forecasting of the Hotel Room Sales (호텔 객실판매 예측에 관한 실증적 연구 - 서울지역 특급호텔을 중심으로 -)

  • Han, Seung-Youb
    • Korean Business Review
    • /
    • v.4
    • /
    • pp.281-295
    • /
    • 1991
  • Nothing is more incorrect than forecasting. Nevertheless, forecasting is one of the most important business activities for the effective management. There has been rapid changes of the growth rate in every respect of the Korean hospitaity industry, especially the hotel industry, before and after the 88 Olympic Games. Therefore, the hoteliers shall be in need of more-than-ever accourate demand forecasting for the more systematic management and control. Under the above circumstances, this study suggested the best forecasting technique and method for the better sales and operations of the hotel rooms. The number of rooms sold is selected as a dependent variable of this study which is regarded as the best representative factor of measuring the growth rate of the rooms division performance of the hotels. The first step was to select the most verifiable independent variable diferently from the other countries or other areas of Korea. As a result, the number of foreign visitors was chosen. Empirical research, i.e. correlation and multiple regression analysis, shows that this independent variable has a strong relationship with the dependent variable told above. The second procedure was to estimate the number of rooms will be sold in 1991 on the basis of the formula calculated through the multiple regression analysis. Time series technique was conducted using the data of the number of foreign visitors by purpose of travel from 1987 to 1990. For the more correct forecasting, however, it would be desirable to adopt the data from 1989 considering the product or the industry life cycle. In addition, deeper analysis for the monthly or seasonal forecasting method is needed as a future research.

  • PDF

A Study on the Optimization of Multiple Injection Strategy for a Diesel Engine using Grey Relational Analysis and Linear Regression Analysis (선형 회귀 분석과 회색 관계 분석을 이용한 디젤엔진의 다단연료분사 제어전략 최적화 연구)

  • Kim, Sookyum;Woo, Seungchul;Kim, Woong Il;Park, Sangki;Lee, Kihyung
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.247-253
    • /
    • 2015
  • Recently, the engine calibration technique has been much more complicated than that of the past engine case in order to satisfy the strict emission regulations. The current calibration method for the diesel engine which has an increasing market is both costly and time-consuming. New engine calibration method is required to develop for high-quality diesel engines with low cost and release it at the appropriate time. This study provides the optimal calibrating technique for complex engine systems using statistical modeling and numerical optimization. Firstly, it design a test plan based on Design of Experiments, a V-optimality methodology which is suitable looking for set-points, and determine the shape of test engine response. Secondly, it uses functions to make linear regression model for data analysis and optimization to fit the models of engines behavior. Finally, it generates the optimal calibrations obtained directly from empirical engine models using Grey Relational Analysis and compares the calibrations with data. This method can develop a process for systematically identifying the optimal balance of engine emissions.

A Prediction of Stock Price Through the Big-data Analysis (인터넷 뉴스 빅데이터를 활용한 기업 주가지수 예측)

  • Yu, Ji Don;Lee, Ik Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.154-161
    • /
    • 2018
  • This study conducted to predict the stock market prices based on the assumption that internet news articles might have an impact and effect on the rise and fall of stock market prices. The internet news articles were tested to evaluate the accuracy by comparing predicted values of the actual stock index and the forecasting models of the companies. This paper collected stock news from the internet, and analyzed and identified the relationship with the stock price index. Since the internet news contents consist mainly of unstructured texts, this study used text mining technique and multiple regression analysis technique to analyze news articles. A company H as a representative automobile manufacturing company was selected, and prediction models for the stock price index of company H was presented. Thus two prediction models for forecasting the upturn and decline of H stock index is derived and presented. Among the two prediction models, the error value of the prediction model (1) is low, and so the prediction performance of the model (1) is relatively better than that of the prediction model (2). As the further research, if the contents of this study are supplemented by real artificial intelligent investment decision system and applied to real investment, more practical research results will be able to be developed.

Prediction of Ultimate Bearing Capacity of Soft Soils Reinforced by Gravel Compaction Pile Using Multiple Regression Analysis and Artificial Neural Network (다중회귀분석 및 인공신경망을 이용한 자갈다짐말뚝 개량지반의 극한 지지력 예측)

  • Bong, Tae-Ho;Kim, Byoung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.6
    • /
    • pp.27-36
    • /
    • 2017
  • Gravel compaction pile method has been widely used to improve the soft ground on the land or sea as one of the soft ground improvement technique. The ultimate bearing capacity of the ground reinforced by gravel compaction piles is affected by the soil strength, the replacement ratio of pile, construction conditions, and so on, and various prediction equations have been proposed to predict this. However, the prediction of the ultimate bearing capacity using the existing models has a very large error and variation, and it is not suitable for practical design. In this study, multiple regression analysis was performed using field loading test results to predict the ultimate bearing capacity of ground reinforced by gravel compaction pile, and the most efficient input variables are selected through evaluation of error by leave one out cross validation, and a multiple regression equation for the prediction of ultimate bearing capacity was proposed. In addition, the prediction error was evaluated by applying artificial neural network using the selected input variables, and the results were compared with those of the existing model.

Incremental Regression based on a Sliding Window for Stream Data Prediction (스트림 데이타 예측을 위한 슬라이딩 윈도우 기반 점진적 회귀분석)

  • Kim, Sung-Hyun;Jin, Long;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • v.34 no.6
    • /
    • pp.483-492
    • /
    • 2007
  • Time series of conventional prediction techniques uses the model which is generated from the training step. This model is applied to new input data without any change. If this model is applied directly to stream data, the rate of prediction accuracy will be decreased. This paper proposes an stream data prediction technique using sliding window and regression. This technique considers the characteristic of time series which may be changed over time. It is composed of two steps. The first step executes a fractional process for applying input data to the regression model. The second step updates the model by using its information as new data. Additionally, the model is maintained by only recent data in a queue. This approach has the following two advantages. It maintains the minimum information of the model by using a matrix, so space complexity is reduced. Moreover, it prevents the increment of error rate by updating the model over time. Accuracy rate of the proposed method is measured by RME(Relative Mean Error) and RMSE(Root Mean Square Error). The results of stream data prediction experiment are performed by the proposed technique IMQR(Incremental Multiple Quadratic Regression) is more efficient than those of MLR(Multiple Linear Regression) and SVR(Support Vector Regression).

Development of Prediction Model for Moisture and Protein Content of Single Kernel Rice using Spectroscopy (분광분석법을 이용한 단립 쌀의 함수율 및 단백질 함량 예측모델 개발)

  • 김재민;최창현;민봉기;김종훈
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • The objectives of this study were to develop models to predict the contents of moisture and protein of single kernel of brown rice based on visible/NIR (near-infrared) spectroscopic technique. The reflectance spectra of rice were obtained in the range of the wavelength 400 to 2,500 nm with 2 nm intervals. Multiple linear regression(MLR) and partial least squares (PLS) were used to develop the models. The MLR model using the first derivative spectra(10 nm of gap) with Standard Normal Variate and Detrending (SNV and Drt.) preprocessing showed the best results to predict moisture content of the sin린e kernel brown rice. To predict the protein content of a single kernel of brown ricer the PLS model used the raw spectra with multiplicative scatter correction(MSC) preprocessing over the wavelength of 1,100~1,500 nm.

  • PDF

Development of the Wind Power Forecasting System, KIER Forecaster (풍력발전 예보시스템 KIER Forecaster의 개발)

  • Kim Hyun-Goo;Lee Yung-Seop;Jang Mun-Seok;Kyong Nam-Ho
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.37-43
    • /
    • 2006
  • In this paper, the first forecasting system of wind power generation, KIER Forecaster is presented. KIER Forecaster has been constructed based on statistical models and was trained with wind speed data observed at Gosan Weather Station nearby Walryong Site. Due to short period of measurements at Walryong Site for training the model, Gosan wind data were substituted and transplanted to Walryong Site by using Measure-Correlate-Predict(MCP) technique. The results of One to Three-hour advanced forecasting models are consistent with the measurement at Walryong site. In particular, the multiple regression model by classification of wind speed pattern, which has been developed in this work, shows the best performance comparing with neural network and auto-regressive models.

  • PDF

Effects of Meteorological Factors on the Frequency of the Traffic Accidents in Seoul (기상요인이 교통사고 발생에 미치는 영향 분석 : 서울지역을 중심으로)

  • Lee, Ki-Kwang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The traffic accidents in Korea have been increasing every year due to various reasons and simultaneously causing socioeconomic cost at the national level. This study has analyzed the correlation between meteorological factors and the traffic accidents in Seoul during 2013. Especially, we have selected season, rain and temperature among the meteorological factors to identify their significance with the traffic accidents. In addition, analysis of variance, t-test and a multiple regression technique is applied. Major findings from the analyses are discussed at the district point of view, including the different effect of weather condition and the interaction effect of rain and temperature in winter. The results of this study would be useful for developing management strategies to reduce car crashes and injury severity in Seoul.