• Title/Summary/Keyword: multiple input multiple

Search Result 2,072, Processing Time 0.027 seconds

Wiretapping Strategies for Artificial Noise Assisted Communication in MU-MIMO wiretap channel

  • Wang, Shu;Da, Xinyu;Chu, Zhenyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2166-2180
    • /
    • 2016
  • We investigate the opposite of artificial noise (AN)-assisted communication in multiple-input-multiple-output (MIMO) wiretap channels for the multiuser case by taking the side of the eavesdropper. We first define a framework for an AN-assisted multiuser multiple-input-multiple-output (MU-MIMO) system, for which eavesdropping methods are proposed with and without knowledge of legitimate users' channel state information (CSI). The proposed method without CSI is based on a modified joint approximate diagonalization of eigen-matrices algorithm, which eliminates permutation indetermination and phase ambiguity, as well as the minimum description length algorithm, which blindly estimates the number of secret data sources. Simulation results show that both proposed methods can intercept information effectively. In addition, the proposed method without legitimate users' CSI performs well in terms of robustness and computational complexity.

Estimation of Sparse Channels in Millimeter-Wave MU-MIMO Systems

  • Hu, Anzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2102-2123
    • /
    • 2016
  • This paper considers a channel estimation scheme for millimeter-wave multiuser multiple-input multiple-output systems. According to the proposed method, parts of the beams are selected and the channel parameters are estimated according to the sparsity of channels and the orthogonality of the beams. Since the beams for each channel become distinct and the signal power increases with the increased number of antennas, the proposed approach is able to achieve good estimation performance. As a result, the sum rate can be increased in comparison with traditional approaches, and channels can be estimated with fewer pilot symbols. Numerical results verify that the proposed approach outperforms traditional approaches in cases with large numbers of antennas.

Low Complexity Multiuser Scheduling in Time-Varying MIMO Broadcast Channels

  • Lee, Seung-Hwan;Lee, Jun-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.2
    • /
    • pp.71-75
    • /
    • 2011
  • The sum-rate maximization rule can find an optimal user set that maximizes the sum capacity in multiple input multiple output (MIMO) broadcast channels (BCs), but the search space for finding the optimal user set becomes prohibitively large as the number of users increases. The proposed algorithm selects a user set of the largest effective channel norms based on statistical channel state information (CSI) for reducing the computational complexity, and uses Tomlinson-Harashima precoding (THP) for minimizing the interference between selected users in time-varying MIMO BCs.

UEP Precoder Selection Technique for ML Detected SM MIMO Systems (ML검출 기반 공간다중화 MIMO 시스템의 UEP 프리코더 선정기술)

  • Park, Jaeyoung;Kim, Jaekwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.747-749
    • /
    • 2017
  • In this paper, we propose a novel precoder selection technique for maximum-likelihood (ML) detected spatially multiplexed multiple-input multiple-output (MIMO) systems. Previous precoder selection techniques were designed without considering UEP, however the proposed technique is designed considering multi-antenna unequal error protection (UEP). Simulations demonstrate the improved multi-antenna UEP performance by the proposed technique.

Rotation-Invariant Pattern Recognition of the Multiple Circular Harmonic Filter Using Proper Center (적정의 중심점을 이용한 다중 원형 고조 필터의 회전 불변적 형태 인식)

  • 김종찬;도양회;김수중
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.1
    • /
    • pp.130-136
    • /
    • 1990
  • For the rotation-invariant pattern recognition, we propose multiple circular harmonic filter which is expanded about the proper center. The proper centerm when input image is given, is the circular harmonic expansion center of the filter which yields a maximum center correlation peak in the output plane. In this paper, we founded the circular harmonic components that the proper center superposes on the same position and then designed multiple circular harmonic filter using these components. Also the proposed filter is compared with conventional multiple circular harmonic filter and shows that it can maximize the center correlation peak for the rotated input image by the computer simulation.

  • PDF

Performance Analysis of LR-aided ZF Receiver for MIMO Systems

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.37-43
    • /
    • 2018
  • Lattice-reduction (LR) techniques have been developed for signal detection in spatial multiplexing multiple input multiple output (MIMO) systems to obtain the largest diversity gain. Thus, an LR-assisted zero-forcing (ZF) receiver can achieve the maximum diversity gain in spatial multiplexing MIMO systems. In this paper, a simplified analysis of the achievable diversity gain is presented by fitting the channel coefficients lattice-reduced by a complex Lenstra-Lenstra-$Lov{\acute{a}}z$ (LLL) algorithm into approximated Gaussian random variables. It will be shown that the maximum diversity gain corresponding to two times the number of receive antennas can be achieved by the LR-based ZF detector. In addition, the approximated bit error rate (BER) expression is also derived. Finally, the analytical BER performance is comparatively studied with the simulated results.

Achievable Ergodic Capacity of a MIMO System with a MMSE Receiver

  • Kim, Jae Hong;Kim, Nam Shik;Song, Bong Seop
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.349-352
    • /
    • 2014
  • This paper considers the multiple-input multiple-output (MIMO) system with linear minimum mean square error (MMSE) detection under ideal fast fading. For $N_t$ transmit and $N_r({\geq}N_t)$ receive antennas, we derive the achievable ergodic capacity of MMSE detection exactly. When MMSE detection is considered in a receiver, we introduce a different approach that gives the approximation of a MIMO channel capacity at high signal-to-noise ratio (SNR). The difference between the channel capacity and the achievable capacity of MMSE detection converges to some constant that depends only on the number of antennas. We validate the analytical results by comparing them with Monte Carlo simulated results.

Spatial Multiuser Access for Reverse Link of Multiuser MIMO Systems

  • Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10A
    • /
    • pp.980-986
    • /
    • 2008
  • Spatial multiuser access is investigated for the reverse link of multiuser multiple-input multiple-output (MIMO) systems. In particular, we consider two alternative a aches to spatial multiuser access that adopt the same detection algorithm at the base station: one is a closed-loop approach based on singular value decomposition (SVD) of the channel matrix, whereas the other is an open-loop approach based in space-time block coding (STBC). We develop multiuser detection algorithms for these two spatial multiuser access schemes based on the minimum mean square error (MMSE) criterion. Then, we compare the bit error rate (BER) performance of the two schemes and a single-user MIMO scheme. Interestingly, it is found that the STBC approach can provide much better BER performance than the SVD approach as well as than a single-user MIMO scheme.

Before/After Precoding Massive MIMO Systems for Cloud Radio Access Networks

  • Park, Sangkyu;Chae, Chan-Byoung;Bahk, Saewoong
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.398-406
    • /
    • 2013
  • In this paper, we investigate two types of in-phase and quadrature-phase (IQ) data transfer methods for cloud multiple-input multiple-output (MIMO) network operation. They are termed "after-precoding" and "before-precoding". We formulate a cloud massive MIMO operation problem that aims at selecting the best IQ data transfer method and transmission strategy (beamforming technique, the number of concurrently receiving users, the number of used antennas for transmission) to maximize the ergodic sum-rate under a limited capacity of the digital unit-radio unit link. Based on our proposed solution, the optimal numbers of users and antennas are simultaneously chosen. Numerical results confirm that the sum-rate gain is greater when adaptive "after/before-precoding" method is available than when only conventional "after-precoding" IQ-data transfer is available.

Efficient Near-Optimal Detection with Generalized Sphere Decoder for Blind MU-MIMO Systems

  • Kim, Minjoon;Park, Jangyong;Kim, Hyunsub;Kim, Jaeseok
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.682-685
    • /
    • 2014
  • In this letter, we propose an efficient near-optimal detection scheme (that makes use of a generalized sphere decoder (GSD)) for blind multi-user multiple-input multiple-output (MU-MIMO) systems. In practical MU-MIMO systems, a receiver suffers from interference because the precoding matrix, the result of the precoding technique used, is quantized with limited feedback and is thus imperfect. The proposed scheme can achieve near-optimal performance with low complexity by using a GSD to detect several additional interference signals. In addition, the proposed scheme is suitable for use in blind systems.