• Title/Summary/Keyword: multiple genes

Search Result 590, Processing Time 0.033 seconds

Microarray Data Analysis of Perturbed Pathways in Breast Cancer Tissues

  • Kim, Chang-Sik;Choi, Ji-Won;Yoon, Suk-Joon
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.210-222
    • /
    • 2008
  • Due to the polygenic nature of cancer, it is believed that breast cancer is caused by the perturbation of multiple genes and their complex interactions, which contribute to the wide aspects of disease phenotypes. A systems biology approach for the identification of subnetworks of interconnected genes as functional modules is required to understand the complex nature of diseases such as breast cancer. In this study, we apply a 3-step strategy for the interpretation of microarray data, focusing on identifying significantly perturbed metabolic pathways rather than analyzing a large amount of overexpressed and underexpressed individual genes. The selected pathways are considered to be dysregulated functional modules that putatively contribute to the progression of disease. The subnetwork of protein-protein interactions for these dysregulated pathways are constructed for further detailed analysis. We evaluated the method by analyzing microarray datasets of breast cancer tissues; i.e., normal and invasive breast cancer tissues. Using the strategy of microarray analysis, we selected several significantly perturbed pathways that are implicated in the regulation of progression of breast cancers, including the extracellular matrix-receptor interaction pathway and the focal adhesion pathway. Moreover, these selected pathways include several known breast cancer-related genes. It is concluded from this study that the present strategy is capable of selecting interesting perturbed pathways that putatively play a role in the progression of breast cancer and provides an improved interpretability of networks of protein-protein interactions.

Molecular characterization of yeast Snf1 homologue (sucrose non-fermenting gene) from Magnaporthe grisea

  • Yi, Mi-Hwa;Jeong, Jae-Gyu;Kim, Bong-Gyu;Ahn, Joong-Hoon;Lee, Yong-Hwan
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.84.2-85
    • /
    • 2003
  • Magnaporthee grisea causes the devastating blast disease of rice. Entensive research has been conducted on infection mechanisms, particularly on appressorium formation and penetration, of this fungus during the last decade. However, the role(s) of cell-wall-degrading enzymes (CWDEs) on pathogenesis is not clearly demonstrated at molecular level. Many CWDES in plant pathogenic fungi including M. grisea are redundant; that is, there are multiple genes encoding enzymes with a similar or overlapping spectrum of activities. It is laborious to isolate all of the genes encoding related enzymes and to construct mutants lacking all 9f them. Thus, we considered alternative strategies to address the role of CWDEs in pathogenesis. Since expression of CWDE genes Is repressed by a simple sugar, as the first step, we cloned a Snfl (sucrose non-fermenting) gene (MgSnf1) from M. grisea. The predicted amino acid sequence showed a high identity with other Snf1 genes from various fungi. To elucidate molecular function of MgSnf1, a transformant lacking MgSnf1 was created by targeted gene replacement. En glucose, sucrose, and xylan the MgSnf1 mutant grew normally but in pectin and complex media, it grew slower than wild type. Expression of various CWDEs in MgSnf1 mutant was investigated and found that expression of some CWDEs is repressed. However, no significant difference was observed in conidial germination, appressorium formation, and pathogenicity in MgSnf1 mutant. However, MgSnf1 functionally complemented a yeast MgSnf1 mutant. These results suggest that MgSnf1 is involved in regulation of CWDEs and MgSnf1 is dispensable in pathogenicity of M. grisea.

  • PDF

Codon usage analysis of rice prolamine genes (쌀 저장 단백질 프롤라민 유전자 암호 분석)

  • Lee, Tae-Ho;Kim, Ju-Kon;Nahm, Baek-Hie
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.525-532
    • /
    • 1993
  • To characterize the prolamines in rice cultivars, the complete coding sequences of 17 prolamine genes from the database were analyzed. According to the phylogenic analysis of the sequences, these genes could be classified into 4 groups, Group I to IV. The multiple alignment of the deduced amino acid sequences revealed that the four groups differ from one another in chain length caused by deletion of short internal amino acids or carboxyl terminal fragments. Each group was also found to have different amino acid composition with 1, 4, 10 and 30% of sulfur containing amino acids (methionine and cysteine) in Group I to IV prolamines, respectively. Also the isoelectric points of these groups showed the different values of 9.2, 8.2, 6.7 and 7.4. Finally, from the analysis of codon usage pattern of prolamine genes, the codon usage for arginine, serine, threonine, isoleucine, asparagine, aspartic acid, glutamic acid and cysteine were higly biased. In the analysis of the codon usage pattern, the relation of the fraction of G/C ending codons to effective codon numbers suggests the different translational efficiency in the expression of the prolamine multigenes.

  • PDF

Analysis of Functional Genes in Carbohydrate Metabolic Pathway of Anaerobic Rumen Fungus Neocallimastix frontalis PMA02

  • Kwon, Mi;Song, Jaeyong;Ha, Jong K.;Park, Hong-Seog;Chang, Jongsoo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1555-1565
    • /
    • 2009
  • Anaerobic rumen fungi have been regarded as good genetic resources for enzyme production which might be useful for feed supplements, bio-energy production, bio-remediation and other industrial purposes. In this study, an expressed sequence tag (EST) library of the rumen anaerobic fungus Neocallimastix frontalis was constructed and functional genes from the EST library were analyzed to elucidate carbohydrate metabolism of anaerobic fungi. From 10,080 acquired clones, 9,569 clones with average size of 628 bp were selected for analysis. After the assembling process, 1,410 contigs were assembled and 1,369 sequences remained as singletons. 1,192 sequences were matched with proteins in the public data base with known function and 693 of them were matched with proteins isolated from fungi. One hundred and fifty four sequences were classified as genes related with biological process and 328 sequences were classified as genes related with cellular components. Most of the enzymes in the pathway of glucose metabolism were successfully isolated via construction of 10,080 ESTs. Four kinds of hemi-cellulase were isolated such as mannanase, xylose isomerase, xylan esterase, and xylanase. Five $\beta$-glucosidases with at least three different conserved domain structures were isolated. Ten cellulases with at least five different conserved domain structures were isolated. This is the first solid data supporting the expression of a multiple enzyme system in the fungus N. frontalis for polysaccharide hydrolysis.

Antibiotic Resistance and Virulence Potentials of Shiga Toxin-Producing Escherichia coli Isolates from Raw Meats of Slaughterhouses and Retail Markets in Korea

  • Park, Hyun-jung;Yoon, Jang Won;Heo, Eun-Jeong;Ko, Eun-Kyoung;Kim, Ki-Yeon;Kim, Young-Jo;Yoon, Hyang-Jin;Wee, Sung-Hwan;Park, Yong Ho;Moon, Jin San
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1460-1466
    • /
    • 2015
  • In this study, the prevalence of Shiga toxin-producing Escherichia coli (STEC) was investigated among raw meat or meat products from slaughterhouses and retail markets in South Korea, and their potential for antibiotic resistance and virulence was further analyzed. A total of 912 raw meats, including beef, pork, and chicken, were collected from 2008 to 2009. E. coli strains were frequently isolated in chicken meats (176/233, 75.9%), beef (102/217, 42.3%), and pork (109/235, 39.2%). Putative STEC isolates were further categorized, based on the presence or absence of the Shiga toxin (stx) genes, followed by standard O-serotyping. Polymerase chain reaction assays were used to detect the previously defined virulence genes in STEC, including Shiga toxins 1 and Shiga toxin 2 (stx1 and 2), enterohemolysin (ehxA), intimin (eaeA), STEC autoagglutination adhesion (saa), and subtilase cytotoxin (subAB). All carried both stx1 and eae genes, but none of them had the stx2, saa, or subAB genes. Six (50.0%) STEC isolates possessed the ehxA gene, which is known to be encoded by the 60-megadalton virulence plasmid. Our antibiogram profiling demonstrated that some STEC strains, particularly pork and chicken isolates, displayed a multiple drug-resistance phenotype. RPLA analysis revealed that all the stx1-positive STEC isolates produced Stx1 only at the undetectable level. Altogether, these results imply that the locus of enterocyte and effacement (LEE)-positive strains STEC are predominant among raw meats or meat products from slaughterhouses or retail markets in Korea.

Epigenetic Changes within the Promoter Regions of Antigen Processing Machinery Family Genes in Kazakh Primary Esophageal Squamous Cell Carcinoma

  • Sheyhidin, Ilyar;Hasim, Ayshamgul;Zheng, Feng;Ma, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10299-10306
    • /
    • 2015
  • The esophageal squamous cell carcinoma (ESCC) is thought to develop through a multi-stage process. Epigenetic gene silencing constitutes an alternative or complementary mechanism to mutational events in tumorigenesis. Posttranscriptional regulation of human leukocyte antigen class I (HLA-I) and antigen processing machinery (APM) proteins expression may be associated with novel epigenetic modifications in cancer development. In the present study, we determined the expression levels of HLA-I antigen and APM components by immunohistochemistry. Then by a bisulfite-sequencing PCR (BSP) approach, we identified target CpG islands methylated at the gene promoter region of APM family genes in a ESCC cell line (ECa109), and further quantitative analysis of CpG site specific methylation of these genes in cases of Kazakh primary ESCCs with corresponding non-cancerous esophageal tissues using the Sequenom MassARRAY platform. Here we showed that the development of ESCCs was accompanied by partial or total loss of protein expression of HLA-B, TAP2, LMP7, tapasin and ERp57. The results demonstrated that although no statistical significance was found of global target CpG fragment methylation level sof HLA-B, TAP2, tapasin and ERp57 genes between ESCC and corresponding non-cancerous esophageal tissues, there was significant differences in the methylation level of several single sites between the two groups. Of thesse only the global methylation level of LMP7 gene target fragments was statistically higher ($0.0517{\pm}0.0357$) in Kazakh esophageal cancer than in neighboring normal tissues ($0.0380{\pm}0.0214$, p<0.05). Our results suggest that multiple CpG sites, but not methylation of every site leads to down regulation or deletion of gene expression. Only some of them result in genetic transcription, and silencing of HLA-B, ERp57, and LMP7 expression through hypermethylation of the promoters or other mechanisms may contribute to mechanisms of tumor escape from immune surveillance in Kazakh esophageal carcinogenesis.

Developing a Parametric Method for Testing the Significance of Gene Sets in Microarray Data Analysis (마이크로어레이 자료분석에서 모수적 방법을 이용한 유전자군의 유의성 검정)

  • Lee, Sun-Ho;Lee, Seung-Kyu;Lee, Kwang-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.397-408
    • /
    • 2009
  • The development of microarray technology makes possible to analyse many thousands of genes simultaneously. While it is important to test each gene whether it shows changes in expression associated with a phenotype, human diseases are thought to occur through the interactions of multiple genes within a same functional cafe-gory. Recent research interests aims to directly test the behavior of sets of functionally related genes, instead of focusing on single genes. Gene set enrichment analysis(GSEA), significance analysis of microarray to gene-set analysis(SAM-GS) and parametric analysis of gene set enrichment(PAGE) have been applied widely as a tool for gene-set analyses. We describe their problems and propose an alternative method using a parametric analysis by adopting normal score transformation of gene expression values. Performance of the newly derived method is compared with previous methods on three real microarray datasets.

Gata6 in pluripotent stem cells enhance the potential to differentiate into cardiomyocytes

  • Yoon, Chang-Hwan;Kim, Tae-Won;Koh, Seok-Jin;Choi, Young-Eun;Hur, Jin;Kwon, Yoo-Wook;Cho, Hyun-Jai;Kim, Hyo-Soo
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.85-91
    • /
    • 2018
  • Pluripotent stem cell (PSC) variations can cause significant differences in the efficiency of cardiac differentiation. This process is unpredictable, as there is not an adequate indicator at the undifferentiated stage of the PSCs. We compared global gene expression profiles of two PSCs showing significant differences in cardiac differentiation potential. We identified 12 up-regulated genes related to heart development, and we found that 4 genes interacted with multiple genes. Among these genes, Gata6 is the only gene that was significantly induced at the early stage of differentiation of PSCs to cardiomyocytes. Gata6 knock-down in PSCs decreased the efficiency of cardiomyocyte production. In addition, we analyzed 6 mESC lines and 3 iPSC lines and confirmed that a positive correlation exists between Gata6 levels and efficiency of differentiation into cardiomyocytes. In conclusion, Gata6 could be utilized as a biomarker to select the best PSC lines to produce PSC-derived cardiomyocytes for therapeutic purposes.

Genomic Organization and Isoform-Dependent Expression Patterns of Wap65 genes in Various Tissues during Immune Challenges in the Mud Loach Misgurnus mizolepis

  • Kim, Yi Kyung;Cho, Young Sun;Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.4
    • /
    • pp.471-478
    • /
    • 2014
  • Genomic organization, including the structural characteristics of 5'-flanking regions of two 65-kDa protein (WAP65) isoform genes associated with warm temperature acclimation, were characterized and their transcriptional responses to immune challenges were examined in the intestine, kidney and spleen of the mud loach (Misgurnus mizolepis; Cypriniformes). Both mud loach Wap65 isoform genes displayed a 10-exon structure that is common to most teleostean Wap65 genes. The two mud loach Wap65 isoforms were predicted to possess various stress- and immune-related transcription factor binding sites in their regulatory regions; however, the predicted motif profiles differed between the two isoforms, and the inflammation-related transcription factor binding motifs, such as NF-${\kappa}B$ and CREBP sites, were more highlighted in the Wap65-2 isoform than the Wap65-1 isoform. The results of qRT-PCR indicated that experimental immune challenges using Edwardsiella tarda, lipopolysaccharide or polyI:C induced the Wap65-2 isoform more than Wap65-1 isoform, although modulation patterns in response to these challenges were tissue- and stimulant-dependent. This study confirms that functional diversification between the two mud loach Wap65 isoforms (i.e., closer involvement of Wap65-2 in the acute phase of inflammation and innate immunity) occurs at the mRNA level in multiple tissues, and suggests that such differential modulation patterns between the two isoforms are related to the different transcription factor binding profiles in their regulatory regions.

The Antioxidant Effect, Inhibition of Interleukin-4 and the Effect on the Gene Expression by Using cDNA Chip of Chungsangboha-tang(Qingshangbuxia-tang) (청상보하탕의 항산화 효과, Interleukin-4 억제 및 cDNA chip을 이용한 유전자발현에 미치는 영향)

  • 이동생;정희재;정승기;이형구
    • The Journal of Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.148-158
    • /
    • 2003
  • Backgrounds & Objectives: In many recent studies, molecular biological methods have been used to investigate the role of cytokines in pathogenesis and new therapeutic targets of asthma. Recently, as a method of research on the gene expression, they are applying another method which assays multiple gene expressions at the same time by the microarray. In this study, the antioxidant effect, the inhibitory effect against interleukin-4 and the effect on the CD/cytokine gene expression in PBMC (peripheral blood mononuclear cells) was evaluated by using cDNA microarray chip of Chungsangboha-tang. Methods: Experimental studies were performed for the antioxidant effect of Chungsangboha-tang on DPPH (1, 1-diphenyl-2-picrylhydrazyl) solution, for the IL-4-inhibiting effect on BALB/c mouse spleen, and for the gene expression effect on PBMC (peripheral blood mononuclear cells) with microarray. Results: Chungsangboha-tang showed antioxidant effect dose-dependently. Chungsangboha-tang inhibited interleukin-4 dose-dependently and showed significant difference in 10ug/ml and 100ug/ml of test groups. There was no 2 more times upregulated genes than in the control group by using cDNA microarray chip of Chungsangbohn-tang, but there were 140%-200% upregulated genes. There was no 2 more times downregulated genes than in the control group by using cDNA microarray chip of Chungsangboha-Tang, but there was 50%-75% downregulated genes. Conclusions: This study showed that Chungsangboha-tang has an antioxidant effect and inhibition of Interleukin-4, but further studies are necessary with microarray.

  • PDF