Molecular characterization of yeast Snf1 homologue (sucrose non-fermenting gene) from Magnaporthe grisea

  • Yi, Mi-Hwa (School of Agricultural Biotechnology, Seoul National University) ;
  • Jeong, Jae-Gyu (Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Bong-Gyu (Bio/Molecular Informatics Center, Konkuk University) ;
  • Ahn, Joong-Hoon (Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Yong-Hwan (School of Agricultural Biotechnology, Seoul National University)
  • Published : 2003.10.01

Abstract

Magnaporthee grisea causes the devastating blast disease of rice. Entensive research has been conducted on infection mechanisms, particularly on appressorium formation and penetration, of this fungus during the last decade. However, the role(s) of cell-wall-degrading enzymes (CWDEs) on pathogenesis is not clearly demonstrated at molecular level. Many CWDES in plant pathogenic fungi including M. grisea are redundant; that is, there are multiple genes encoding enzymes with a similar or overlapping spectrum of activities. It is laborious to isolate all of the genes encoding related enzymes and to construct mutants lacking all 9f them. Thus, we considered alternative strategies to address the role of CWDEs in pathogenesis. Since expression of CWDE genes Is repressed by a simple sugar, as the first step, we cloned a Snfl (sucrose non-fermenting) gene (MgSnf1) from M. grisea. The predicted amino acid sequence showed a high identity with other Snf1 genes from various fungi. To elucidate molecular function of MgSnf1, a transformant lacking MgSnf1 was created by targeted gene replacement. En glucose, sucrose, and xylan the MgSnf1 mutant grew normally but in pectin and complex media, it grew slower than wild type. Expression of various CWDEs in MgSnf1 mutant was investigated and found that expression of some CWDEs is repressed. However, no significant difference was observed in conidial germination, appressorium formation, and pathogenicity in MgSnf1 mutant. However, MgSnf1 functionally complemented a yeast MgSnf1 mutant. These results suggest that MgSnf1 is involved in regulation of CWDEs and MgSnf1 is dispensable in pathogenicity of M. grisea.

Keywords