• 제목/요약/키워드: multiple failure criteria

검색결과 45건 처리시간 0.027초

Effect of FRP parameters in strengthening the tubular joint for offshore structures

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Ocean Systems Engineering
    • /
    • 제8권4호
    • /
    • pp.409-426
    • /
    • 2018
  • This paper presents the strengthening of tubular joint by wrapping Carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP). In this study, total number of layers, stacking sequence and length of wrapping are the different parameters involved when fiber reinforced polymers (FRP) composites are used for strengthening. For this, parameters where varied and results were compared with the reference joint. The best stacking sequence was identified which has the highest value in ultimate load with lesser deflections. For determining the best stacking sequence, numerical investigation was performed on CFRP composites; length of wrapping and number of layers were fixed. Later, the studies were focused on CFRP and GFRP strengthened joint by varying the total number of layers and length of wrapping. An attempt was done to propose a parametric equation from multiple regression analysis, which can be used for CFRP strengthened joints. Hashin failure criteria was used to check the failure of composites. Results revealed that FRP was having a greater influence in the load bearing capacity of joints, and in reducing the deflections and stresses of joint under axial compressive loads. It was also seen that, CFRP was far better than GFRP in reducing the stresses and deflection.

Prediction of lifespan and assessing risk factors of large-sample implant prostheses: a multicenter study

  • Jeong Hoon Kim;Joon-Ho Yoon;Hae-In Jeon;Dong-Wook Kim;Young-Bum Park;Namsik Oh
    • The Journal of Advanced Prosthodontics
    • /
    • 제16권3호
    • /
    • pp.151-162
    • /
    • 2024
  • PURPOSE. This study aimed to analyze factors influencing the success and failure of implant prostheses and to estimate the lifespan of prostheses using standardized evaluation criteria. An online survey platform was utilized to efficiently gather large samples from multiple institutions. MATERIALS AND METHODS. During the one-year period, patients visiting 16 institutions were assessed using standardized evaluation criteria (KAP criteria). Data from these institutions were collected through an online platform, and various statistical analyses were conducted. Risk factors were assessed using both the Cox proportional hazard model and Cox regression analysis. Survival analysis was conducted using Kaplan-Meier analysis and nomogram, and lifespan prediction was performed using principal component analysis. RESULTS. The number of patients involved in this study was 485, with a total of 841 prostheses evaluated. The median survival was estimated to be 16 years with a 95% confidence interval. Factors found to be significantly associated with implant prosthesis failure, characterized by higher hazard ratios, included the 'type of clinic', 'type of antagonist', and 'plaque index'. The lifespan of implant prostheses that did not fail was estimated to exceed the projected lifespan by approximately 1.34 years. CONCLUSION. To ensure the success of implant prostheses, maintaining good oral hygiene is crucial. The estimated lifespan of implant prostheses is often underestimated by approximately 1.34 years. Furthermore, standardized form, online platform, and visualization tool, such as nomogram, can be effectively utilized in future follow-up studies.

Auxiliary domain method for solving multi-objective dynamic reliability problems for nonlinear structures

  • Katafygiotis, Lambros;Moan, Torgeir;Cheungt, Sai Hung
    • Structural Engineering and Mechanics
    • /
    • 제25권3호
    • /
    • pp.347-363
    • /
    • 2007
  • A novel methodology, referred to as Auxiliary Domain Method (ADM), allowing for a very efficient solution of nonlinear reliability problems is presented. The target nonlinear failure domain is first populated by samples generated with the help of a Markov Chain. Based on these samples an auxiliary failure domain (AFD), corresponding to an auxiliary reliability problem, is introduced. The criteria for selecting the AFD are discussed. The emphasis in this paper is on the selection of the auxiliary linear failure domain in the case where the original nonlinear reliability problem involves multiple objectives rather than a single objective. Each reliability objective is assumed to correspond to a particular response quantity not exceeding a corresponding threshold. Once the AFD has been specified the method proceeds with a modified subset simulation procedure where the first step involves the direct simulation of samples in the AFD, rather than standard Monte Carlo simulation as required in standard subset simulation. While the method is applicable to general nonlinear reliability problems herein the focus is on the calculation of the probability of failure of nonlinear dynamical systems subjected to Gaussian random excitations. The method is demonstrated through such a numerical example involving two reliability objectives and a very large number of random variables. It is found that ADM is very efficient and offers drastic improvements over standard subset simulation, especially when one deals with low probability failure events.

진삼축압축시험을 통한 마찰재료의 강도 및 변형 특성 평가 (Evaluation of Strength and Deformability of a Friction Material Based on True Triaxial Compression Tests)

  • 배준봉;엄정기;정호영
    • 지질공학
    • /
    • 제32권4호
    • /
    • pp.597-610
    • /
    • 2022
  • 중간주응력을 고려한 마찰재료의 파괴거동에 대한 확고한 이해는 대심도 보어홀 안정성 및 단층해석 등과 관련된 현장 적용의 고도화를 위한 필수적인 과정이다. 본 연구는 진삼축압축 조건을 물리적으로 구현하는 장비를 설계·제작하였으며 마찰재료로 제작된 석고 시료에 대한 진삼축압축시험을 통하여 재료의 파괴거동 특성을 논의하고 삼차원파괴함수의 적용성을 검토하였다. 진삼축압축시험을 위한 석고 재료는 52(w) × 52(l) × 104(h) mm의 직육면체 시료로 성형하였으며 다양한 조합의 𝜎3, 𝜎2의 조건으로 총 24회의 진삼축압축시험이 수행되었다. 또한, 삼차원 파괴기준식의 파라미터로 사용되는 석고의 강도정수 측정을 위하여 전통적인 일축압축시험 및 삼축압축시험이 수행되었다. 석고 재료의 응력-변형 특성은 중간주응력과 최소주응력의 차이가 클수록 취성거동이 더욱 강하게 나타났으며, 시료의 강도 및 변형은 중간주응력의 변화를 반영하는 것으로 평가되었다. 주응력 좌표계에서 시험 데이터에 대한 비선형 다중회귀분석을 수행한 결과 수정 Wiebols-Cook 파괴기준 및 수정 Lade 파괴기준이 석고 시료에 대한 삼차원 파괴기준으로 가장 적합하였다.

시스템즈 엔지니어링 기법을 이용한 원자력발전소 부지 선정 방법에 대한 연구 (NPP Site Selection : A Systems Engineering Approach)

  • ;;;정재천
    • 시스템엔지니어링학술지
    • /
    • 제9권1호
    • /
    • pp.55-63
    • /
    • 2013
  • Nuclear power plant site selection is a complex process and its successful completion is a critical milestone in the NPP development cycle. Proper siting of NPP will ensure public health and safety, environmental conservation, reduced project failure risks and a smooth NPP development process among other benefits. The objective of this paper is to demonstrate the application of systems engineering to the problem of NPP siting in Kenya. The siting process demonstrated in this paper includes stakeholder need analysis where stakeholders are identified and their needs concerning NPP site are elicited and converted into system functional requirements. A value model is then developed and potential sites iteratively subjected to three types of criteria i.e. exclusionary criteria, avoidance criteria and suitability criteria. This process is used to identify the candidate sites. An additive value model; multiple objectives Decision Analysis (MODA) is then used to calculate candidate solutions values. The site with the highest solution value score is selected. Sensitivity studies using different criterion weight sets (thereby reflecting different viewpoints) can be conducted to assess their effect on the selection of a preferred site and thereby lend additional credibility to the decision process.

Evaluation of Plugging Criteria on Steam Generator Tubes and Coalescence Model of Collinear Axial Through-Wall Cracks

  • Lee, Jin-Ho;Park, Youn-Won;Song, Myung-Ho;Kim, Young-Jin;Moon, Seong-In
    • Nuclear Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.465-476
    • /
    • 2000
  • In a nuclear power plant, steam generator tubes cover a major portion of the primary pressure-retaining boundary. Thus very conservative approaches have been taken in the light of steam generator tube integrity According to the present criteria, tubes wall-thinned in excess of 40% should be plugged whatever causes are. However, many analytical and experimental results have shown that no safety problems exist even with thickness reductions greater than 40%. The present criterion was developed about twenty years ago when wear and pitting were dominant causes for steam generator tube degradation. And it is based on tubes with single cracks regardless of the fact that the appearance of multiple cracks is more common in general. The objective of this study is to review the conservatism of the present plugging criteria of steam generator tubes and to propose a new coalescence model for two adjacent through-wall cracks existing in steam generator tubes. Using the existing failure models and experimental results, we reviewed the conservatism of the present plugging criteria. In order to verify the usefulness of the proposed new coalescence model, we performed finite element analysis and some parametric studies. Then, we developed a coalescence evaluation diagram.

  • PDF

두개의 평행한 축방향 관통균열이 존재하는 증기발생기 세관의 최적 파손예측모델 (Optimum Failure Prediction Model of Steam Generator Tube with Two Parallel Axial Through-Wall Cracks)

  • 이진호;송명호;최영환;김낙철;문성인;김영진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1186-1191
    • /
    • 2003
  • The 40% of wall criterion, which is generally used for the plugging of steam generator tubes, may be applied only to a single crack. In the previous study, a total of 9 failure models were introduced to estimate the local failure of the ligament between cracks and the optimum coalescence model of multiple collinear cracks was determined among these models. It is, however, known that parallel axial cracks are more frequently detected during an in-service inspection than collinear axial cracks. The objective of this study is to determine the plastic collapse model which can be applied to the steam generator tube containing two parallel axial through-wall cracks. Nine previously proposed local failure models were selected as the candidates. Subsequently interaction effects between two adjacent cracks were evaluated to screen them. Plastic collapse tests for the plate with two parallel through-wall cracks and finite element analyses were performed for the determination of the optimum plastic collapse model. By comparing the test results with the prediction results obtained from the candidate models, a plastic zone contact model was selected as an optimum model.

  • PDF

화재 후 운전원수동조치(OMA) 정량화를 위한 화재 인간신뢰도분석 (HRA) 요소에 대한 고찰 (An Investigation of Fire Human Reliability Analysis (HRA) Factors for Quantification of Post-fire Operator Manual Actions (OMA))

  • 최선영;강대일;정용훈
    • 한국안전학회지
    • /
    • 제38권6호
    • /
    • pp.72-78
    • /
    • 2023
  • The purpose of this paper is to derive a quantified approach for Operator Manual Actions (OMAs) based on the existing fire Human Reliability Analysis (HRA) methodology developed by the Korea Atomic Energy Research Institute (KAERI). The existing fire HRA method was reviewed, and supplementary considerations for OMA quantification were established through a comparative analysis with NUREG-1852 criteria and the review of the existing literature. The OMA quantification approach involves a timeline that considers the occurrence of Multiple Spurious Operations (MSOs) during a Main Control Room Abandonment (MCRA) determination and movement towards the Remote Shutdown Panel (RSP) in the event of a Main Control Room (MCR) fire. The derived failure probability of an OMA from the approach proposed in this paper is expected to enhance the understanding of its reliability. Therefore, it allows moving beyond the deterministic classification of "reliable" or "unreliable" in NUREG-1852. Also, in the event of a nuclear power plant fire where multiple OMAs are required within a critical time range, it is anticipated that the OMA failure probability could serve as a criterion for prioritizing OMAs and determining their order of importance.

Bayesian Analysis for Multiple Change-point hazard Rate Models

  • Jeong, Kwangmo
    • Communications for Statistical Applications and Methods
    • /
    • 제6권3호
    • /
    • pp.801-812
    • /
    • 1999
  • Change-point hazard rate models arise for example in applying "burn-in" techniques to screen defective items and in studing times until undesirable side effects occur in clinical trials. Sometimes in screening defectives it might be sensible to model two stages of burn-in. In a clinical trial there might be an initial hazard rate for a side effect which after a period of time changes to an intermediate hazard rate before settling into a long term hazard rate. In this paper we consider the multiple change points hazard rate model. The classical approach's asymptotics can be poor for the small to all moderate sample sizes often encountered in practice. We propose a Bayesian approach avoiding asymptotics to provide more reliable inference conditional only upon the data actually observed. The Bayesian models can be fitted using simulation methods. Model comparison is made using recently developed Bayesian model selection criteria. The above methodology is applied to a generated data and to a generated data and the Lawless(1982) failure times of electrical insulation.

  • PDF

Fatigue Life Prediction of Laminated Composite Materials by Multiple S-N Curves and Lamina-Level Failure Criteria

  • Hangil You;Dongwon Ha;Young Sik Joo;Gun Jin Yun
    • Composites Research
    • /
    • 제36권1호
    • /
    • pp.42-47
    • /
    • 2023
  • In this paper, we present a fatigue life prediction methodology using multiple S-N curves according to the different stress states of laminated composites. The stress states of the plies of the laminated composites are classified into five modes: longitudinal tension or compression and transverse tension or compression, and shear according to the maximum stress criterion and Puck's criterion with a scaling factor K. This methodology has advantages in computational cost, and it can also consider microstructural characteristics of the composites by applying different S-N curves. The S-N curves for the fatigue analysis are obtained by experimental fatigue test. The proposed methodol is implemented into commercial software, ABAQUS user material subroutine and therefore, the fatigue analysis is conducted using the structural analysis results. The finite element (FE) simulation results are presented for unidirectional composites with and without open-hole. The FE simulation results show that the stress condition is different depending on the fiber orientation of the unidirectional composite, so the fatigue life is calculated with different S-N curves.