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Abstract

Change-point hazard rate models arise, for example, in applying “burn-in”
techniques to screen defective items and in studing times until undesirable side effects
occur in clinical trials. Sometimes, in screening defectives it might be sensible to
model two stages of burn-in. In a clinical trial, there might be an initial hazard rate
for a side effect which, after a period of time, changes to an intermediate hazard
rate before settling into a long term hazard rate. In this paper, we consider the
multiple change points hazard rate model. The classical approach’s asymptotics can be
poor for the small to all moderate sample sizes often encountered in practice. We
propose a Bayesian approach, avoiding asymptotics, to provide more reliable inference
conditional only upon the data actually observed. The Bayesian models can be fitted
using simulation methods. Model comparison is made using recently developed
Bayesian model selection criteria. The above methodology is applied to a generated
data and the Lawless(1982) failure times of electrical insulation.

1. Introduction

In the reliability theory a widely accepted procedure is to apply "burn-in” techniques to
screen out defective items and improve the lifetimes of surviving items. One helpful tool for
capturing "burn-in” is to model the age process by the hazard function. See Cinlar(1975) for
the age process. Let T denote the lifetime with density function f{t) and survival function

F(fy=P.T>1. We consider the case of more than one threshold if it were appropriate.

For instance, in screening defectives it might be sensible to model two stages of burn-in. In a
clinical trial, there might be an initial hazard rate for a side effect which, after a period of
time, changes to an intermediate hazard rate before settling into a long term hazard rate. An
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illustrative hazard function k(¢ = —%{)5 would take the form
h( t) = 01](0< =< Tl) + 62]( 2'1< =< 2'2) + 63](t> Tz) (1.1
where
{1 if x€A
1(A)= { 0 otherwise.

More specifically, suppose the lifetimes of items are independent, but that first failures appear
to occur at one rate and second failure (after some threshold time) appear to occur at another
rate and so on. That is, it is assumed to be k change points in the given period. Then a

suitable form for the hazard function h(t) is
WD = h(DIO<t<1) + hy( DN <t<t) + -+ h (D L7 41 <t<T) + hp (D L7y, (1.2)

where 7=1(r; -+, 74) is the threshold parameter vector and re(RY)* From(12), the

cumulative hazard function is, for 7,<# 7,4,

H) = [ (e

— Hy(min(, )+ BHAT) — Ht )1 13
+[H o (D—H o (217
where H(9 is the cumulative hazard function on 7,,<t<7;, set H;(r))— H(7p)=0and
[a]+={a if a>0.
0  otherwise.
In practice neither z nor A;’s will be known. The goal of this paper is to consider inference
in this general case.
The literature to date focuses primarily on examination of this problem from a classical

perspective. For instance, Nguyen et al. (1984) consider the case where h(H= A, and
hy(£)= A, for k=2 in our case. Basu et al.(1988) extend this to allow a general #; keeping
ho(H) = A,<h(D) .See also Ebrahimi(1991) and Loader(1991) in this regard. In all of this work
estimates for ¢ and A; are proposed and their asymptotic properties are examined. Such

asymptotics can be poor for the small to moderate sample size often encountered in practical
reliability situations. We adopt a fully Bayesian approach for this problem, avoiding
asymptotics to provide more reliable inference conditional only upon the data actually
observed. Indeed, for each feature of the model we obtain an entire posterior distribution
enabling any desired inference about the feature. In order to deflect customary criticism of the
Bayesian approach to subjectivity in the prior specification, we adopt rather vague priors so
that our inference resembles that of a likelihood analysis.

The remainder of the paper is organized as follows. Section 2 introduce the Bayesian model
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with a sample of lifetime collected under (1.2). We discuss prior specifications for zj,:, 7,
and fitting using simulation methods. In Section 3, we discuss the issues of model selection

using Bayes factor. In Section 4, we specialize to the case of h()=6,, hy(H=6, and

hs(t)= 65 which yields particularly simple fitting. Finally, we analyze a generated data and a

real data set from Lawless(1982).

2. Bayesian formulation in change-point hazard rate model

Returning to (1,1), we adopt a semi-parametric modelling assuming %,(f)=h(t ©,) for
i=1,--,k+1. That is, hk;'s are, possibly distinct, parametric families of hazard functions
indexed by ©/s.

For an uncensored sample T ---, T,0f lifetime, the likelihood takes the form
L6, 0y, 1y T ) = ]Ijlh(tj)exp(_H(tf))
1
_ I“I ﬁ 1t @) etz ry)
j=1 I=1

X exp {— ,Z‘K(Hl( min(tj, T1); @1) + ZI[HZ( Ty @i) - Hz'(f i—1> @z')] *
+[H 1 (50 1) — H (115 0 5.)]17)}
2.1
where t= (-, t,denotes the observed values of the lifetimes.

For notational convenience, let

r ~1 r,—1
e vy, =, 7= Lllhl(t(z): gy)- I'Ir[, ity O4) lljlrhk-f-l(t(i): 0 vs1)

and

71
ZHH/:(I‘(,): Gy + ;ﬂHm(t(ni 6ii1)

r =1
H(t ry,t, Tk)z ]Z‘Hl(t(i): 01)++ ;

Then (2.1) becomes

Lk(el’ '“,6k+1, Tl’ ”"z-k; t)
= Wt 7y, -, v} exp{—H(t: 7|, 7p) (2.2)

— B k= DL 7 ) HA e )= (r oy = 7 H (52 0,20))
with ry=1 and »,,,=n—1.
For our model we need to uniquely define the notion of "no change”. That is, 7,¢ t, V7,
is not distinguishable from 7,=¢;, ¥ ; in either case there is no change-point during the

period of observation. As a simple remedy, if we order the observation times,

t <t <<ty , we restrict the likelihood so that r;>¢# (. Certainly of k change points



804 Younshik Chung, Kwangmo Jeong and Mihae Han

during the period of observation would then add the further restriction, 7;<{f(,—s+p. Since
there are k change-points during the period, the conditions such as
t (<t (nopsp for [=2,--- k are added to the likelihood function.

To create a Bayesian model, we require a prior specification for &, ®,,--,®,.; and
71,", T We assume that it takes the general form

RO, 0, D)X Ay, 1) (2.3)

and that it is proper to assure that the posterior A®;, -, ® ,11, 71, -, 7| #) is proper. Our

prior information on 17,,:'-, 7, places it on the interval (0, b) with b possibly c©. The actual

support for r; is truncated according to the restrictions imposed by the likelihood.
Combining (2.2) and (2.3) provides the complete Bayesian specification and thus the
posterior A@,, -, 0,1, 1, , Tx| D which is proportional to
Li{®y, 01,11, T DXRO, -, 0 p ) X A1y, 7). (24)
In fact for each ¢, since 4,f;©;)s and H,(¢; ©,)'s are all random variables, they all have
posterior distributions which would be of interest as well. However, primary interest is in the
posterior for 7, Ar;/f) and when a change is not certain, Pr(z,> ¢t (%) .

The expression in (2.3) is not analytically tractable so we turn to simulation approaches for
fitting such a model. That is, we seek to draw samples from the posterior in (2.3) in order to
learn about its features. Customary iterative approaches using, e.g. a rejection method or
weighted bootstrap, see Smith and Gelfand (1992), are difficult here. However, the form in
(2.3) is nicely suited for Markov chain Monte carlo simulation using Gibbs sampling updating

(Gelfand and Smith, 1990). To clarify we consider the full conditional distributions for /s
and for r;.

In particular, we immediately have A®,|® (_, r, ) proportional to

7 —1 =1
glhl(t(,,;@l) X exp{— ZlHl(t(,);@1)}><f(@1,---,@k+1). 25)

7=

For =2, k+1, the full conditional distribution of ®, is given by

ri—1 r—1
H hl(t(j);@l) X f(@ly'“,@l&l)xeXD{_ ,‘2 Hl(t(f);@l) (2.6)

=7, i1

— (=i (k= 1+ DH 11; 0) — (k— I+ 2)H 7 -1 @)1}

As for z;'s. suppose t(,-pn<n1{t¢), r1=2,,m—k+1. Then , on this interval the full
conditional distribution is given as

[ryr (-, 0.1] 2.7
OCK,,leXp{— k[(?’l— l)Hl(Z'13 (91)_(7’2_ 7’1)H2( Ty 62)]}Xf(2')

where
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K, = h(tr, - rpxexp{—H(t: 7,7

(2.8)
= Bk D= 7 DHA 600 = (r = 7)H 1er(22: 6.)])

for 7=1,"--,kIn general, on the interval ¢, _<7,{t¢y, ¥;=i+1,-,m—k+1i, the full
conditional distribution of r; given r(_5, @and ¢ is given by

[ridz(—p. 60,8] <« K,exp{—(k—=i+D[(r;—r,-)H(7;:8)

2.9
_(71'4—1_ 7’i)I{i+1(z-i: 01’+1)]} X f(Z')
where
K, = h(t:r, - rexp{—H(t: r, 7y (2.10)
- gl,(k“ +1D[ (7’1‘ T/«l)Hz(Tﬁ 91)‘(7’1“— V/)HIH(TF 9/+1)]}
Hence, let
Loy
Co=K, [ Adexp(=(k=i+DI(ri= 7 ) H{z;:6) o1
= (v —7r)H i (r;:0,41)]}dr
—kti Cr
and C,= 2 +1C@nd b, = C; .To sample r; we first randomly select an interval, ie., we

select  t(,-n<7,{¢t(,) with probability p,. We then draw r; in this interval from the
normalized version of (2.9). That is, from the density which is (2.9) devided by C,. Note that
K, cancels out of this density. In special cases the integration for C, can be done explicitly
in which case the density over f(,_y<7,{¢(,) is routine to sample. Finally, for the prior on

r=(ry, ", 1), we illustrate with the case of

f(Tl, Ty, Tk) - lljlm ](t (,’)( Tj(t(n—k+1')) . (2.12)

We have described how to handle a general change-point hazard rate problem using a
Bayesian approach in the absence of censoring. The case where some of the lifetimes are
censored can also be conveniently handled. Suppose, for instance, that for item i, the actual

lifetime is not observed. Rather, the item is removed from test after time w, at which point
it has not failed so, 7> w;. All we need to do is introduce 7T, as latent variable into our
setup in (2.1) and (2.2). The form in (2.2) is unchanged except that 7, is now unknown and
restricted to be greater than w;. (28) now yields a posterior for @;,--, 0,4y, 71, ", 7, and
T; given ¢y -, t,—, w; t;+1, ", f,. Again adopting Gibbs sampling to fit the model, the full
conditional distributions for &; now given T;=1¢ are exactly as in (25) and (2.6). Also
given T;= t;the full conditional distributions for z; is as in (2.9) and (2.10). Lastly, we need

to sample T; given @y, ",0 441,71, ", With T;D w;, i.e. we need to sample 7 from the
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distribution with hazard (1.2) subject to the restriction. If we draw U; which is an

exponential(1) random variable and invert
U;= H\(min (¢, 7;)) + ZI[H[( ) — H{r;-)] e (H 1 () — H (2] * (2.13)

to solve for ¢#;, then ¢, is a realization from the unconstrained distribution. Hence, we retain

t; if > w;. If not we draw a new U;.

3. Bayesian Model Selection

In this section, we try to find the number of change points in given data. For example, we
consider testing Mj: one change v.s. Mj: two changes. That is, the model with one change
and the model with two changes are compared using Bayes factor. In general, suppose that

we are interested in comparing two models M, and M, . The formal Bayesian model choice
procedure goes as follows. Let w; be the prior probability of M;, i=0, land let Ay|M; be

the predictive distribution for model M;, ie.
[ml;= A\ M) = [ Ryl 6,, M) (6,1 M,)db,.
If y is the observed data, then we choose the model yielding the larger wAy|M;). Often we

set w;= —% and compute the Bayes factor (or M, with respect to M;)

fylMy) [mlg
AyImy — [ml,

Jeffreys(1961) and Kass and Raftery(1995) suggest interpretive ranges for the Bayes factor

BF = (3.1)

and in general, M, is supported if BF>1 .
More generally, we want to estimate [m]= f Ay Br(B)dS using the importance sampling

method. Let us consider #(8|y) as the importance sampling function. Then the Markov Chain

Monte Carlo methods, particularly Metropolis algorithm and Gibbs sampler, are used to get

(g)}

the sample from the posterior density #(8ly). Let {A §=1 be Gibbs outputs as above.

Then by Monte Carlo method, the approximating marginal density of Y is

2 w Ky B‘®) (89 A B r(B)
[ m]=—4£= where  w,= Fr - Since z(Bly)= . the
S a(B®1y) [m
=1 %
approximation can be expressed as
—r_L 1 -1
[ml=1g 2wy 17 62)
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Also, this final form is mentioned in Kass and Raftery(1995).

For example, suppose that we want to test one change (M;) v.s. two change (M;) , then

the approximating Bayes factor for favoring M, is given by
[+ 2 Lol
(£ 2wl

where L;( ) and L,( - ) denote the likelihood function under M, and M; in (2.1) or (2.2),

respectively. Bl(g) — (‘91(g), 92(57), r (g)) and BZ(g) — (el(g) , 62(5.7)’ 63(g), Tl(g), Tz(g)) where Bl(g), Bz(g)

are the Gibbs output under the models M, and M, , respectively.

BF

(3.3)

4. Application
4.1. Constant hazard rate model

We consider the case where 2,(H=0,, hy()= 6y, hs(#)= 6. That is,
h( t) = 61](0< 1< Z'l) -+ 62[( T1< 1< T2) -+ 83[<l‘> Z'Q) . (41)
Classical analysis for this case using asymptotic results is present in Ngyuyen et al.(1984)

and Loader(1991). For an observed sample of values # -+-,¢, (2.1) becomes
Ly(6, 6, 03,71, 1,; 0)
_ gErEm g Thectse) g Bow) g :let =0, :Z.:t »— 03 ]g t o (4.2)
=2(C(r =D 011y = (= 7)) — (35— 7’1)92T2‘(7’3*l 72)0379)} z
For the prior on &, ; and 683, we take independent gamma specifications restricted to
{650, 8,} , ie, A, 8, 8;) is propotional to
005" 05" exp { — by 6y — by, — by 03} I(63< 6,< 6)) 4.3)

Also for the prior on r=(zy, ry), we illustrate with the case of

- 1 ‘
f(Z‘l, 2’2)—— zljl t(,,_2+1)— t(i) [(t(,)<l',<t(n_2+1)). (4.4)

In applications we choose the a; and b; so that the prior provide little information. For

convenient notation, Gam(a,b) denotes the gamma distribution with two parameters a and b.

Then the full conditional distributions of &;'s given @ (-,, 7y, t3, t are as follows;
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=1
[91[(92,03,T1,T2,t] = GQM(CYI+7’1,( let(j)+2(71_1)fl+bl)_l)

[92|91, 93, Ty, 79, t] = de(612+ Yo — 7’1,( l; t(j)—f—(rz-— 7’1)(2'2_2T1)+ bz) _1)
* 1(03< (92( (91)

and

[6516,,0,, 71,79, t] = Gam(as+ n— ry,( /Zrzt(j)— (n—1—r)ry+ b3) 1)
- I(0< 65< 6,)
Then (2.7) becomes
[zl 7o, 64, 65, 65, 1]

1t <oty
oo K, exp(—2(r—1)6—(rp— r)0y) ) x Lt0<T o)

-t

where
rn—1 7,1
Krl — 0]7’1 1627'2 716371 7'_’+lexp{"'0l ]th(j)_gz ngt(J)—63/§zt(})
_((72_7’1)62_(73_7’2)83)2'2}
and
[z2]71, 61, 0,, 05, 1]
It (y <1t (ne9))
o Krzx eXD{_((Tz_7’1)92_(73"‘72)63)2'2} t(Z) —(t 2)
(n—2) (2)

where

=l =1
K, =6 ', 705 exp {— 6 jglf(;)_gz lzﬁtm-@s ]Af-lzt(;‘)
_2((7’2_1)91_(72"7’1)(92)2'1}.

(4.5)

(4.6)

4.7

(4.8)

(4.9

(4.10)

(4.11)

Obviously, C, hence p,, can be computed explicitly so choosing an interval at random for

7; is easily done. Then we can draw ®$\tau_i$ within this interval by simple cumulative

distribution function.

4.2. Simulated data

In this subsection, we try to find the number of change point in a simulated data set. We

assume the model (4.1) with two change points and sample size #=15and generate a data

set given in Table 4.1 according to the following simulation design.

1) Set ,=3.0, 6,=20 and #3=1.0 as the values of scale parameters.
ii) Fix the location of change point, 7; and 7, such that P(7T<r;)=0.3 and
P(T<rt;)=0.7. Therefore, we can find 7;=11.8892and r;=54.2541.
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Table 4.1. Simulated data

110.825 12708 0.103 55313 575825 42315 530.743 172.104
0.008 20910 12.799 0.080 0.094 35134 0.108

First of all, we consider testing M;: one change point against M;: two change points in

the model for the model selection. That is, the likelihood functions under M, is given by

( 1'1 (
Li(61,0,, ;0 = QZHS 21 . exp {— 6, Z = b ,ﬁyt(’) (4.12)
"((7’1—1)9171_(7’2_ 7’1)022'1)}
and the likelihood function for M;, L.(6,, 6,, 85, 7, 79; £) is given in (4.2). For diffuse prior

of #'s, a’s ans $b%’'s are set to zero. Gibbs sampler was run for 5,000 iterations and the

first 3,000 being discard as a burn-in period. Convergence of the Gibbs sampler was assessed
via Geweke(1992) method, using the CODA(Best, Cowles and Vines, 1995) suitable of

diagnostics in S-plus. The number of parameters is 5, such as 8y, 8y, 5,7, and r,. Most of

the parameters had Geweke statistics between —1.96 and 1.96, indicating convergence is

plausible.

Figure 4.1. Posteriors of 1y, 1y
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Thus, we compute the approximate Bayes factor(or M, with respect to M;) in (3.3) as
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follows;

ml M)
BF=——">-=0.23779 4.13)
m[Ml] (

Since BF<1 in (4.14), it is reasonable the model M; with two change points is well
fitted. Therefore, we need only the posterior characteristics under M;. Table 4.2 indicates
the posterior means and 95 percent interval estimate for M, which has the two change
points model. In Table 4.2, the first and second change point, 7; and 7y, are estimated to

6.82 and 49.66, respectively. In Figure 4.1, the solid line means the marginal posterior

density of 7; and the dotted line for 75 for simulated data.

Table 4.2 Inference summary with two change points

posterior mean posterior interval estimate
6, 2.7303 (1.2254, 4.8966)
G 1.3459 (0.5628, 2.5250)
05 0.5314 (0.2191, 0.9266)
7, 5.8241 (0.1028, 20.4497)
2 39.6645 (12.7183, 109.3623)

4.3. A Real data set

We have data which represent failure times in hours for electrical insulation in which the
insulation was subjected to a continuously increasing voltage stresses.

Table 4.3. Electrical insulation data

2193 794 8 150.2 21.7 185 1219 405 1471 3b1 423 487

Lawless(1982) fits a simple exponential model to these data. For diffuse prior of 8's, a's ans
b's are set to zero. Here, Gibbs sampler is applied. Also, Geweke statistics is used for
checking the convergence of Gibbs outputs. We consider the constant hazard rate model and

compare M, : one change-point with M, : two change-points. Since the approximated Bayes
factor in (3.3) is obtained as 2.289F+ 3, the constant hazard model with one change point
is adequate. For the one change-point model, the estimated value 7, is 33.320. Figure 4.2

indicates the marginal posterior density of 7.
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Figure 4.2. Posteriors of 7
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