This study aims to analyze the WTO-inconsistent aspects of the single rate presumption of the United States in establishing and imposing anti-dumping duties for non-market economy exporters. By examining the drafting history in the GATT/WTO negotiations and the practice of the single rate presumption for non-market economies by the United States from a comparative perspective, it critically addresses the inherent lack of pertinent disciplines under the framework of the WTO Anti-Dumping Agreement in establishing dumping margins for exporters of non-market economies. The WTO Dispute Settlement Body leaves open the possibility of allowing the investigating authority to consider multiple exporters and the exporting country as a single entity. However, the study argues that it is difficult in practice for the investigating authority to make a single-entity decision in a WTO-consistent manner. The study also finds an incompatibility in the notion between establishing dumping margins for 'individual' exporters and 'non-market economies.' A proper discipline for non-market economies under the multilateral anti-dumping norm needs to be reconsidered in the era of persistent trade conflicts between the United States and China.
본 연구는 다중개체모형을 기반으로 무형문화유산 메타데이터 요소를 개발하였다. 이를 위해 2016년에 새롭게 제정된 "무형문화재 보전 및 진흥에 관한 법률"과 무형문화유산 기록화도서 및 자원조사를 실시한 기관들의 기록정보자원과 가이드라인 및 전승현황을 조사하고, 관련 기관의 무형문화유산 디지털아카이빙 현황과 정보서비스들을 분석하여 무형문화유산에서 요구되는 정보항목들을 도출하였다. 또한 다중개체모형 기반의 무형문화유산 메타데이터 개발을 통해 가장 핵심인 무형문화유산 정보를 기준으로 무형문화유산과 관련된 행위주체들의 정보, 그리고 이들이 생산하는 기록정보자원 정보, 이들 기록정보자원들을 관리하는 데 필요한 기록관리업무 정보를 유기적으로 연결하여 종합적으로 제공할 수 있도록 하였다. 무형문화유산의 다양한 관계와 이들 정보의 최신성을 유지함으로써 정보의 효율적인 관리와 더불어 이용자에게 무형문화유산에 대한 풍부한 맥락 정보를 제공하고 궁극적으로 무형문화유산의 가치와 지속가능한 발전을 이끌어낼 수 있을 것으로 기대한다.
Multiple cranial and peripheral neuropathies as a delayed sequellae of ethylene glycol poisoning is a less well known clinical entity and its information about long-term electrophysiological and clinical outcomes is limited. We report a 45-year-old male who presented with acute renal failure and subsequently developed multiple cranial neuropathy, respiratory failure, and flaccid tetraparesis. Through sequential electrophysiological studies, we would like suggest that the main pathophysiology of ethylene glycol-related neuropathy is a demyelinating polyradiculoneuropathy with secondary axonal degeneration.
This study introduces CR-M-SpanBERT, a coreference resolution (CR) model that utilizes multiple embedding-based span bidirectional encoder representations from transformers, for antecedent recognition in natural language (NL) text. Information extraction studies aimed to extract knowledge from NL text autonomously and cost-effectively. However, the extracted information may not represent knowledge accurately owing to the presence of ambiguous entities. Therefore, we propose a CR model that identifies mentions referring to the same entity in NL text. In the case of CR, it is necessary to understand both the syntax and semantics of the NL text simultaneously. Therefore, multiple embeddings are generated for CR, which can include syntactic and semantic information for each word. We evaluate the effectiveness of CR-M-SpanBERT by comparing it to a model that uses SpanBERT as the language model in CR studies. The results demonstrate that our proposed deep neural network model achieves high-recognition accuracy for extracting antecedents from NL text. Additionally, it requires fewer epochs to achieve an average F1 accuracy greater than 75% compared with the conventional SpanBERT approach.
본 논문에서는 급격히 증가하는 생의학 분야 비정형 텍스트에서 핵심적 내용을 추출할 수 있는 기계학습 기반 정보 추출시스템을 구축하기 위한 언어자원 수집 및 통합적 구조화 방안을 제안한다. 제안된 방법은 정보 추출 시스템을 크게 개체명 인식과 개체명 간 관계 추출 시스템으로 구분하고, 각각의 시스템에 적합한 학습데이터를 구성하기 위해 생의학 분야 개체명 사전과 학습 집합을 수집한다. 그리고 수집된 해당 자원들의 특성을 분석하여 개체 구별을 위해 필수적으로 포함시켜야 할 항목들을 도출하고 이를 통해 시스템 학습과정에서 사용될 학습 데이터를 구성하기 위한 항목을 선정한다. 이와 같이 선정된 학습데이터의 구성 내용에 따라 수집된 자원들을 가공하여 학습 데이터를 구축한다. 본 연구에서는 생의학 분야의 하위 분야인 유전자, 단백질, 질병, 약물 4개 분야에 대한 개체명 사전과 학습 집합을 수집하여 각각을 학습 데이터로 구축하였으며, 개체명 사전을 통해 구축된 개체명 인식용 학습 데이터를 대상으로 개체명 수용 범위를 측정하기 위한 검증 과정을 수행하였다.
이 논문에서는 개체에 대한 신뢰도를 계산하기 위해 여러 가지의 평가기준을 이용하고, 또한 다른 개체들로 부터의 추천정보를 이용하는 신뢰모델에 대해서 제안한다. 제안한 모델에서는 개체의 신뢰도를 개체가 주어진 상황에서 만족스러운 결과를 낼 기대값으로 정의한다. 다른 개체와 상호작용이 일어날 때마다 각 평가기준에 빠른 평가결과가 얻어진다고 전제하는 상황에서 적용되는 신뢰 모델이다. 제안한 모델에서는 신뢰정보가 요구될 때 우선 결과확률 분포와 개체의 평가결과에 대한 선호도를 고려하여 각 평가기준에 대한 만족정도를 계산한때, 이렇게 계산된 만족정도 값들은 각 평가기준의 중요를 반영하여 하나의 신뢰값으로 결합된다. 이때 추천 정보도 신뢰값에 함께 결합되는 모델이다.
다중작업학습(Multi-Task Learning, MTL) 기법은 하나의 신경망을 통해 다양한 작업을 동시에 수행하고 각 작업 간에 상호적으로 영향을 미치면서 학습하는 방식을 말한다. 본 연구에서는 전통문화 말뭉치를 직접 구축 및 학습데이터로 활용하여 다중작업학습 기법을 적용한 개체명 인식 모델에 대해 성능 비교 분석을 진행한다. 학습 과정에서 각각의 품사 태깅(Part-of-Speech tagging, POS-tagging) 과 개체명 인식(Named Entity Recognition, NER) 학습 파라미터에 대해 Bi-LSTM 계층을 통과시킨 후 각각의 Bi-LSTM을 계층을 통해 최종적으로 두 loss의 joint loss를 구한다. 결과적으로, Bi-LSTM 모델을 활용하여 단일 Bi-LSTM 모델보다 MTL 기법을 적용한 모델에서 1.1%~4.6%의 성능 향상이 있음을 보인다.
Myelolipoma in the mediastinum is an extremely rare entity. In this report, we present the case of a 79-year-old asymptomatic man who had three bilateral paravertebral mediastinal tumors. The three tumors were resected simultaneously using bilateral three-port video-assisted thoracoscopic surgery (VATS). There has been no evidence of recurrence within four years after the operation. Multiple bilateral mediastinal myelolipomas are extremely rare. There are no reports in the English literature of multiple bilateral thoracic myelolipomas that were resected simultaneously using bilateral VATS. We also present characteristic features of myelolipomas, which are helpful for diagnosis.
현재 인터넷 환경에서 사용자는 서로 잘 모르는 사람이나 시스템과 상호거래를 하게 되는데 이 경우 서로 다른 개체에 대한 신뢰 정보가 부족하기 때문에 상호 거래의 위험을 감수할 수밖에 없다. 따라서 이러한 불확실성과 위험을 감소시킬 수 있는 방안으로 상대 개체와 직접 경험한 신뢰정보와 추천자에 의한 명성정보를 계산하여 이를 활용하는 방법들이 대두되고 있다. 이 논문에서는 개체에 대한 신뢰를 계산하기 위해 상호거래 결과를 누적한 경험적 확률분포와 여러 가지의 평가 기준에 의한 만족도를 계산하고, 이를 다른 개체들로부터의 추천정보와 결합하여 계산하는 신뢰 모델을 제안한다. 제안한 모델에서는 개체의 신뢰도를 개체가 주어진 상황에서 만족스러운 결과를 낼 기대값으로 정의하고, 다른 개체와 상호작용이 일어날 때마다 각 평가 기준에 따른 평가결과가 얻어진다고 전제한다. 신뢰 정보가 요구될 때 우선 경험적 확률분포와 개체의 평가결과에 대한 선호도를 고려하여 각 평가 기준에 대한 만족도를 계산하고, 계산된 만족도 값들은 각 평가기준의 중요도를 반영하여 하나의 신뢰값으로 결합되며, 이때 추천 정보도 신뢰값에 함께 결합되는 모델이다. 이 논문에서는 제안한 모델을 이용해 전자상거래에 적용한 실험 결과를 보여 주고 있다.
정보추출은 문헌 내에 존재하는 개체명을 인식함과 동시에 이들 간의 의미적 관계까지도 식별하여 최종적으로 문헌 내에 포함된 의미적 트리플을 자동으로 추출하여 활용할 수 있으므로 문헌에 대한 심층적인 분석과 이해에 많은 도움을 줄 수 있다. 그러나 지금까지 대부분의 정보추출에 대한 연구는 개체명 인식과 관계추출이 개별 연구로 각각 분리되어 진행되었으며, 그 결과 입력 문헌에 대한 정보추출의 최종 출력인 의미적 트리플 추출 성능에 대한 객관적이고 정확한 평가가 제대로 이루어지지 않았다. 이에 본 논문에서는 진료 기록 문헌에 나타나는 개체명과 그들 간의 관계를 트리플 형태로 직접 추출할 수 있는 종단형 정보추출의 2가지 모델인 파이프라인 및 결합형 모델을 구축하는 구체적인 방법론을 제시하고 성능 비교 실험을 진행하였다. 우선 파이프라인 모델은 양방향 GRU-CRFs를 활용한 개체명 인식 모듈과 다중 인코딩 기반 관계추출 모듈로 구현되었고, 결합형 모델을 위해서는 다중 헤드 레이블링 기반의 양방향 GRU-CRFs이 적용되었다. 두 가지 시스템을 바탕으로 진료기록 문헌 내의 개체명과 관계를 모두 태깅하여 구축된 i2b2/VA 2010 데이터셋을 활용한 비교 실험에서 파이프라인 모델의 성능이 5.5%(F-measure) 더 높게 나타났다. 추가적으로, 대규모 신경망 언어모델과 수작업으로 구축된 자질 정보를 활용한 최고 수준의 기존 시스템과의 비교 실험을 통해, 본 논문에서 구현한 종단형 모델의 객관적인 성능 수준을 파악할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.