• Title/Summary/Keyword: multiple beam irradiation

Search Result 21, Processing Time 0.021 seconds

Charge Flow in KH2PO4 Lattice Structure by Using the Proton-Beam Irradiation

  • Han, Doug-Young;Han, Jun-Hee;Lee, Cheal-Eui;Kim, Se-Hun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.111-118
    • /
    • 2008
  • The mechanism of charge flow has been probed by measuring the $^{1}H$ chemical shift on a proton-irradiated ${KH_2}{PO_4}$ (KDP) single crystal. The proton irradiation caused the increase in $^{1}H$ chemical shift. It can be interpreted as the electronic charge transfer from the proton to oxygen atom, accompanied with the proton displacement along the hydrogen bond. For the high resolution $^{1}H$ chemical shift measurement, CRAMPS (Combined Rotation And Multiple Pulses) technique is utilized.

New Techniques for Optimal Treatment Planning for LINAC-based Stereotactic Radiosurgery (LINAC 뇌정의적 방사선 수술시 새로운 최적 선량분포계획 시스템의 개발)

  • Suh Tae-suk
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.95-100
    • /
    • 1992
  • Since LINAC-based stereotactic radiosurgery uses multiple noncoplanar arcs, three-dimensional dose evaluation and many beam parameters, a lengthy computation time is required to optimize even the simplest case by a trial and error. The basic approach presented in this paper is to show promising methods using an experimental optimization and an analytic optimization The purpose of this paper is not to describe the detailed methods, but introduce briefly, proceeding research done currently or in near future. A more detailed description will be shown in ongoing published papers. Experimental optimization is based on two approaches. One is shaping the target volumes through the use of multiple isocenters determined from dose experience and testing. The other method is conformal therapy using a beam's eye view technique and field shaping. The analytic approach is to adapt computer-aided design optimization in finding optimum irradiation parameters automatically.

  • PDF

Application of CRAMPS for a Phase Transition in H+-ion irradiated TlH2PO4

  • Kim, Se-Hun;Han, J.H.;Lee, Cheol-Eui;Lee, Kwang-Sei;Kim, Chang-Sam;Dalal, N.S.;Han, Doug-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.2
    • /
    • pp.134-143
    • /
    • 2010
  • We studied the hydrogen-bonded $TlH_2PO_4$ (TDP) ferroelectrics treated with the proton-beam bombardment. The TDP material was irradiated with 1-MeV proton beam at a dose of $10^{15}/cm^2$. In order to analyze the hydrogen environment in TDP, we carried out the $^1H$ high resolution nuclear magnetic resonance (NMR) - i.e., Combined Rotation And Multiple Pulse Spectroscopy (CRAMPS) measurement. The isotropic chemical shift of hydrogen indicates its displacive property is related to the $PO_4$ lattice deformation which occurs throughout the antiferroelectric-, the ferroelastic- and the paraelastic-phase transitions. The temperature dependence of $\sigma_{iso}$ reveals the electronic charge redistribution is induced by the proton-beam irradiation and the elastic property.

A Scanning electron microscopic study of the dentinal tubule obliteration effect by the different irradiations of a pulsed Nd:YAG laser (Nd:YAG 레이저의 조사방법의 차이에 따른 상아세관 폐쇄효과에 관한 주사전자현미경적 연구)

  • Ko, Eun-Young;Kim, Song-Wook;Yum, Chang-Yup;Kim, Byoung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.829-844
    • /
    • 1997
  • Dentin hypersensitivity must be one of the most frequent postoperative complaints in periodontal patients. Obliterating the open dentinal tubules or decreasing the diameter of their orifices would, therefore, be an objective of treatment for hypersensitive teeth. The purpose of this study was to evaluate the effect of a pulsed Nd:YAG laser irradiation on obliteration of dentinal tubules and to determine any difference according to irradiation methods. The 45 posterior teeth that had been extracted due to periodontal disease were initially treated with tetracycline HCI(100 mg/ml, 4 min.) to remove the smear layer after root planing. The root surfaces were then irradiated by a pulsed Nd:YAG laser(EL.EN.EN060, Italy) by different laser beam spot size and different exposure condition: ${\cdot}$ group 1: irradiated group by small spot(beam diameter=1mm, lW, 2 sec) ${\cdot}$ group 2: irradiated group by large spot(beam diameter=10mm, 1W, 200 sec) ${\cdot}$ group 3: irradiated group by gradual increase of watt (from 0.3W to 1.0W), beam diameter=4mm ${\cdot}$ group 4: irradiated group by fixed watt(1.0 W), beam diameter=4mm ${\cdot}$ control group: no irradiation but root planing and tetracycline HCI conditioning only. Additionally, the specimens were retreated with tetracycline HCI(100mg/ml, 4min.) to evaluate the stability of obliteration effect by Nd:YAG laser. Specimens were examined under the scanning electron microscope(JEOL, JSM-840A, Japan). Photomicrographs were taken at ${\times}4,000$ magnification and were analyzed statistically. The results were as follows: l. Scanning electron micrographs of root surface treated by tetracycline HCI alone(control group) showed widened, funnel-shaped dentinal tubules, while those of the root surface irradiated by various methods showed partially or completely obliterated dentinal tubules and various surface alterations, eg, flat, multiple pitted, melted and resolidified surface at the same energy density. 2. There was no significant difference in the obliteration effect of dentinal tubules between group 1 and group 2, and between group 3 and group 4(p>0.05). 3. The obliteration effect of dentinal tubules by a Nd:YAG laser irradiation was relatively stable to tetracycline HCI. The results demonstrate that a pulsed Nd:YAG laser irradiation within 1.0W, regardless of irradiation methods, can obliterate dentinal tubules effectively.

  • PDF

Dose Distributions for Ll NAC Radiosurgery with Dynamically Shaping Fields (선형가속기를 이용한 방사선 수술시 Dynamical Field Shaping에 의한 선량분포)

  • Suh Tae Suk;Yoon Sei Chul;Kim Moon Chan;Jang Hong Seok;PArk Yong Whee;Shinn Kyung Sub;Park Charn Il;Ha Sung Whan;Kang Wee Saing
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.431-437
    • /
    • 1993
  • An important problem in radiosurgery is the utilization of the proper beam parameters, to which dose shape is sensitive. Streotactic radiosurgery techniques for a linear accelerator typically, use circular radiation fields with multiple arcs to produce an spherical radiation distribution. Target volumes are irregular in shape for a certain case, and spherical distributions can irradiate normal tissues to high dose as well as the target region. The current improvement to dose distribution utilizes treating multiple isocenters or weighting various arcs to change treatment volume shape. in this paper another promising study relies upon dynamically shaping the treatment beam to fit the beam's eye view of the target. This conformal irradiation technique was evaluated by means of visual three dimensional dose distribution, dose volume histograms to the target volume and surrounding normal brain. It is shown that using even less arcs than multiple isocenter irradiation technique, the conformal therapy yields comparable dose gradients and superior homogeneity of dose within the target volume.

  • PDF

Dose Characteristics of Stereotatic Radiosurgery CONE used for ML-6M Linear Accelerator (ML-6M LINAC에 장착한 Radiosurgery Cone의 Beam 특성에 대한 고찰)

  • Moon, Un-Chull;Kim, Hyun-Jin;Kim, Young-Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.7 no.1
    • /
    • pp.15-31
    • /
    • 1995
  • The radiosurgery treatment is one time, non surgical approach to the treatment of patients with intracranial disorders whose conditions would be difficult or dangerous to treat with conventional sugical procedures. The LINAC based radiosurgery is based on the combination of multiple isocentric arc irradiation with small fields centered in the stereotactic target. The absorption of the beam in a tissue equivalent medium, such as water, as well as the uniformity, or profile, of the beam must be precisely documented. The beam characteristics and dosimetric measurememts of the 6MV X-ray beam from a ML-6M linear accelerator are examined. The percent depth dose (PDD) and beam profile (including flatness, symmetry and penumbra) is calibrated with the radiosurgery cone in water phantom. The cone is made of lead which size is from $10{\times}10mm{\phi}$ to $30{\times}30mm{\phi}$ All of these dosimetric measurements sufficiently characterized the beam to permit safe clinical use.

  • PDF

Practical Surface Sculpting Method for the Fabrication of Predefined Curved Structures using Focused Ion Beam

  • Kim, Heung-Bae
    • Applied Science and Convergence Technology
    • /
    • v.25 no.5
    • /
    • pp.92-97
    • /
    • 2016
  • Surface erosion using focused ion beam irradiation is the most promising technology for the realization of micro/nanofabrication. However, accurate fabrication of predefined structures is still challenging. This article introduces a single step surface driving method to fabricated predefined curved structures. The previously reported multi step surface driving method (MSDM) has been modified so that a single ion dose profile can be used instead of multiple ion dose profiles. Experimental realization of the method is presented with the fabrication of predefined curved surfaces as well as reference to surface propagation theory. For the purpose of verification, simulations are performed on the basis of a sound mathematical model.

Effects of Multiple Reflections of Polarized Beam in Laser Grooving (레이저 홈가공에서 편광빔의 다중반사 효과)

  • Bang Se-Yoon;Seong Kwan-Je
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.81-89
    • /
    • 2005
  • A numerical model for multiple reflection effects of a polarized beam on laser grooving has been developed. The surface of the treated material is assumed to reflect laser irradiation in a fully specular fashion. Combining electromagnetic wave theory with Fresnel's relation, the reflective behavior of a groove surface can be obtained as well as the change of the polarization status in the reflected wave field. The material surface is divided into a number of rectangular patches using a bicubic surface representation method. The net radiative flux far these patch elements is obtained by standard ray tracing methods. The changing state of polarization of the electric field after reflection was included in the ray tracing method. The resulting radiative flux is combined with a set of three-dimensional conduction equations governing conduction losses into the medium, and the resulting groove shape and depth are found through iterative procedures. It is observed that reflections of a polarized beam play an important role not only in increasing the material removal rate but also in forming different final groove shapes. Comparison with available experimental results for silicon nitride shows good agreement for the qualitative trends of the dependence of groove shapes on the electric field vector orientation.

Influence of Surface Roughness on Morphology of Aluminum Alloy After Pulsed-Laser Irradiation (펄스 레이저 조사 후 알루미늄 합금의 표면상태에 대한 표면 거칠기의 영향)

  • Choi, Sung-Ho;Kim, Chung-Seok;Jhang, Kyung-Young;Shin, Wan-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1105-1111
    • /
    • 2011
  • The objective of this study is to investigate the influence of surface roughness on the morphology of aluminum 6061-T6 alloy after irradiation with a Nd:YAG pulsed laser. The test specimen was prepared by a polishing process using a diamond paste ($1{\mu}m$) and emery polishing papers (#100, #220, #600, #2400) to obtain different initial surface roughness. After irradiation with ten pulsed-laser shots, the surface morphology was examined by using scanning electron microscopy (SEM), optical microscopy (OM), and atomic force microscopy (AFM). The diameter of the melted zone increased with the surface roughness because the multiple reflections and absorption of the laser beam occurred on the surface because of the surface roughness, so that the absorptance of the laser beam changed. This result was verified using the relative absorptance calculated from the diameter of the melted zone with the surface roughness and the diameter increased with the average surface roughness.

Thermal Damage Characterization of Silicon Wafer Subjected to CW Laser Beam (CW 레이저 조사에 의한 실리콘 웨이퍼의 손상 평가)

  • Choi, Sung-Ho;Kim, Chung-Seok;Jhang, Kyung-Young;Shin, Wan-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1241-1248
    • /
    • 2012
  • The objective of this study is to evaluate the thermal damage characterization of a silicon wafer subjected to a CW laser beam. The variation in temperature and stress during laser beam irradiation has been predicted using a three-dimensional numerical model. The simulation results indicate that the specimen might crack when a 93-$W/cm^2$ laser beam is irradiated on the silicon wafer, and surface melting can occur when a 186-$W/cm^2$ laser beam is irradiated on the silicon wafer. In experiments, straight cracks in the [110] direction were observed for a laser irradiance exceeding 102 $W/cm^2$. Furthermore, surface melting was observed for a laser irradiance exceeding 140 $W/cm^2$. The irradiance for surface melting is less than that in the simulation results because multiple reflections and absorption of the laser beam might occur on the surface cracks, increasing the absorbance of the laser beam.