DOI QR코드

DOI QR Code

Charge Flow in KH2PO4 Lattice Structure by Using the Proton-Beam Irradiation

  • Han, Doug-Young (Nano-Bio Team, Korea Basic Science Institute) ;
  • Han, Jun-Hee (Department of Physics and Institute for Nano Science, Korea University) ;
  • Lee, Cheal-Eui (Department of Physics and Institute for Nano Science, Korea University) ;
  • Kim, Se-Hun (Faculty of Science Education, Cheju National University)
  • Published : 2008.12.20

Abstract

The mechanism of charge flow has been probed by measuring the $^{1}H$ chemical shift on a proton-irradiated ${KH_2}{PO_4}$ (KDP) single crystal. The proton irradiation caused the increase in $^{1}H$ chemical shift. It can be interpreted as the electronic charge transfer from the proton to oxygen atom, accompanied with the proton displacement along the hydrogen bond. For the high resolution $^{1}H$ chemical shift measurement, CRAMPS (Combined Rotation And Multiple Pulses) technique is utilized.

Keywords

References

  1. D. T. Vigren, Phys. Rev. B 25, 4804 (1982). https://doi.org/10.1103/PhysRevB.25.4804
  2. N. Dalal, A. Klymachyov, and A. Bussmann-Holder, Phys. Rev. Lett. 81, 5924 (1998). https://doi.org/10.1103/PhysRevLett.81.5924
  3. A. Bussmann-Holder, N. Dalal, R. Fu, and R. Migoni, J. Phys.: Condens. Matter 13, L231 (2001). https://doi.org/10.1088/0953-8984/13/11/103
  4. R. Blinc, Ferroelectrics 301, 3 (2004). https://doi.org/10.1080/00150190490464845
  5. A. Bussmann-Holder and K. H. Michel, Phys. Rev. Lett. 80, 2173 (1998). https://doi.org/10.1103/PhysRevLett.80.2173
  6. D. P. Burum and W. K. Rhim, J. Chem. Phys. 71, 944 (1979) https://doi.org/10.1063/1.438385
  7. W-K. Rhim, D. D. Elleman, and R. W. Vaughan, J. Chem. Phys. 59, 3740 (1973) https://doi.org/10.1063/1.1680545
  8. J. S. Waugh, L.M. Huber, and U. Haeberlen, Phys. Rev. Lett. 20, 180 (1968) https://doi.org/10.1103/PhysRevLett.20.180
  9. J.W. Wiench, C.E. Bronimann, and M. Pruski, 49th Rocky Mountain Conference on Analytical Chemistry (Breckenridge, 2007)
  10. P. Mansfield, Phys. Rev. 137, 346 (1965). https://doi.org/10.1103/PhysRev.137.A346
  11. J. G. Powles, and P. Mansfield, Phys. Rev. Lett. 2, 58 (1962). https://doi.org/10.1016/0031-9163(62)90147-6
  12. J. S. Waugh, L. M. Huber, and U. Haeberlen, Phys. Rev. Lett. 20, 180 (1968). https://doi.org/10.1103/PhysRevLett.20.180
  13. S. H. Kim, K. W. Lee, B. H. Oh, C. E. Lee, and K. S. Hong, Phys. Rev. B 76, 172101 (2007). https://doi.org/10.1103/PhysRevB.76.172101
  14. E. H. Lee, Nucl. Instrum. Meth. Phys. Res. B 151, 29 (1999). https://doi.org/10.1016/S0168-583X(99)00129-9
  15. A. Bussmann-Holder, N. Dalal, R. Fu, and R. Migoni, J. Phys.: Condens. Matter 13, L231 (2001). https://doi.org/10.1088/0953-8984/13/11/103
  16. S. J. Kohler, J. D. Ellett, and Jr. M. P. Klein, J. Chem. Phys. 64, 4451 (1976). https://doi.org/10.1063/1.432124
  17. S. H. Kim, K. W. Lee, B. H. Oh, J. J. Kweon, and C. E. Lee, Appl. Phys. Lett. 91, 122912 (2007). https://doi.org/10.1063/1.2784178
  18. Q. Zhang, F. Chen, N. Kioussis, S. G. Demos, and H. B. Radousky, Phys. Rev. B 65, 024108 (2001). https://doi.org/10.1103/PhysRevB.65.024108
  19. S. H. Kim, B. H. Oh, K. W. Lee, C. E. Lee, and K. S. Hong, Phys. Rev. B 73, 134114 (2006). https://doi.org/10.1103/PhysRevB.73.134114