• Title/Summary/Keyword: multiple NoC models

Search Result 30, Processing Time 0.037 seconds

Multiple Network-on-Chip Model for High Performance Neural Network

  • Dong, Yiping;Li, Ce;Lin, Zhen;Watanabe, Takahiro
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.1
    • /
    • pp.28-36
    • /
    • 2010
  • Hardware implementation methods for Artificial Neural Network (ANN) have been researched for a long time to achieve high performance. We have proposed a Network on Chip (NoC) for ANN, and this architecture can reduce communication load and increase performance when an implemented ANN is small. In this paper, a multiple NoC models are proposed for ANN, which can implement both a small size ANN and a large size one. The simulation result shows that the proposed multiple NoC models can reduce communication load, increase system performance of connection-per-second (CPS), and reduce system running time compared with the existing hardware ANN. Furthermore, this architecture is reconfigurable and reparable. It can be used to implement different applications of ANN.

EPCglobal Gen 2 Tag Identification Performance Analysis Modifying the C model in the Q Algorithm (EPCglobal Gen 2 Q 알고리즘에서 C 모델에 따른 태그 인식 성능 평가)

  • Park, Jong-Myung;Cho, Sung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1444-1451
    • /
    • 2009
  • This paper first proposes diverse C determining models in the Q algorithm which is proposed in the EPCglobal C1 Gen 2 standard and then compares and analyzes its performance. EPCglobal C1 Gen 2 standard proposes the slot-count (Q) selection algorithm for multiple tag identification environment, but there is no such definition for the C value which modifies the Q value depending on collision or no reply. During the tag anti-collision process, the Q algorithm adds C to the Q when there is a collision and reduces the Q by C when there is no reply. The modified Q value updates new slot-counts for tags which determines the tag identification speed, so the C value is an important factor. However, many researches only intend to increase the tag identification speed by proposing a new method or modifying the Q algorithm without any research about the C value. This paper suggests diverse C models which satisfies the EPCglobal C1 Gen 2 and analyzes their performance in the multi tag identification environment. The result of this paper can be used as an index for future researches on EPCglobal C1 Gen 2 C models and multiple tag identification performance.

Clinical profile of Asian and African strains of Zika virus in immunocompetent mice

  • Shin, Minna;Kim, Jini;Park, Jeongho;Hahn, Tae-Wook
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.2
    • /
    • pp.12.1-12.9
    • /
    • 2021
  • The mosquito-borne pathogen Zika virus may result in neurological disorders such as Guillain-Barré syndrome and microcephaly. The virus is classified as a member of the Flaviviridae family and its wide spread in multiple continents is a significant threat to public health. So, there is a need to develop animal models to examine the pathogenesis of the disease and to develop vaccines. To examine the clinical profile during Zika virus infection, we infected neonatal and adult wild-type mice (C57BL/6 and Balb/c) and compared the clinical signs of African-lineage strain (MR766) and Asian-lineage strain (PRVABC59, MEX2-81) of Zika virus. Consistent with previous reports, eight-week-old female Balb/c mice infected with these viral strains showed no changes in body weight, survival rate, and neurologic signs, but demonstrated increases in the weights of spleens and hearts. However, one-day-old neonates showed significantly lower survival rate and body weight with the African-lineage strain than the Asian-lineage strain. These results confirmed the pathogenic differences between Zika virus strains. We also evaluated the clinical responses in neonatal and adult mice of different strains. Our findings suggest that these are useful mouse models for characterization of Zika virus for vaccine development.

An evaluation of empirical regression models for predicting temporal variations in soil respiration in a cool-temperate deciduous broad-leaved forest

  • Lee, Na-Yeon
    • Journal of Ecology and Environment
    • /
    • v.33 no.2
    • /
    • pp.165-173
    • /
    • 2010
  • Soil respiration ($R_S$) is a critical component of the annual carbon balance of forests, but few studies thus far have attempted to evaluate empirical regression models in $R_S$. The principal objectives of this study were to evaluate the relationship between $R_S$ rates and soil temperature (ST) and soil water content (SWC) in soil from a cool-temperate deciduous broad-leaved forest, and to evaluate empirical regression models for the prediction of $R_S$ using ST and SWC. We have been measuring $R_S$, using an open-flow gas-exchange system with an infrared gas analyzer during the snowfree season from 1999 to 2001 at the Takayama Forest, Japan. To evaluate the empirical regression models used for the prediction of $R_S$, we compared a simple exponential regression (flux = $ae^{bt}$Eq. [1]) and two polynomial multiple-regression models (flux = $ae^{bt}{\times}({\theta}{\nu}-c){\times}(d-{\theta}{\nu})^f:$ Eq. [2] and flux = $ae^{bt}{\times}(1-(1-({\theta}{\nu}/c))^2)$: Eq. [3]) that included two variables (ST: t and SWC: ${\theta}{\nu}$) and that utilized hourly data for $R_S$. In general, daily mean $R_S$ rates were positively well-correlated with ST, but no significant correlations were observed with any significant frequency between the ST and $R_S$ rates on periods of a day based on the hourly $R_S$ data. Eq. (2) has many more site-specific parameters than Eq. (3) and resulted in some significant underestimation. The empirical regression, Eq. (3) was best explained by temporal variations, as it provided a more unbiased fit to the data compared to Eq. (2). The Eq. (3) (ST $\times$ SWC function) also increased the predictive ability as compared to Eq. (1) (only ST exponential function), increasing the $R^2$ from 0.71 to 0.78.

Principal Component and Multiple Regression Analysis for Steel Fiber Reinforced Concrete (SFRC) Beams

  • Islam, Mohammad S.;Alam, Shahria
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.4
    • /
    • pp.303-317
    • /
    • 2013
  • This study evaluates the shear strength of steel fiber reinforced concrete (SFRC) beams from a database, which consists of extensive experimental results of 222 SFRC beams having no stirrups. In order to predict the analytical shear strength of the SFRC beams more precisely, the selected beams were sorted into six different groups based on their ultimate concrete strength (low strength with $f_c^{\prime}$ <50 MPa and high strength with $f_c^{\prime}$ <50 MPa), span-depth ratio (shallow beam with $a/d{\geq}2.5 $and deep beam with a/d<2.5) and steel fiber shape (plain, crimped and hooked). Principal component and multiple regression analyses were performed to determine the most feasible model in predicting the shear strength of SFRC beams. A variety of statistical analyses were conducted, and compared with those of the existing equations in estimating the shear strength of SFRC beams. The results showed that the recommended empirical equations were best suited to assess the shear strength of SFRC beams more accurately as compared to those obtained by the previously developed models.

A comparison of metabolomic changes in type-1 diabetic C57BL/6N mice originating from different sources

  • Lee, Seunghyun;Kwak, Jae-Hwan;Kim, Sou Hyun;Yun, Jieun;Cho, Joon-Yong;Kim, Kilsoo;Hwang, Daeyeon;Jung, Young-Suk
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.232-238
    • /
    • 2018
  • Animal models have been used to elucidate the pathophysiology of varying diseases and to provide insight into potential targets for therapeutic intervention. Although alternatives to animal testing have been proposed to help overcome potential drawbacks related to animal experiments and avoid ethical issues, their use remains vital for the testing of new drug candidates and to identify the most effective strategies for therapeutic intervention. Particularly, the study of metabolic diseases requires the use of animal models to monitor whole-body physiology. In line with this, the National Institute of Food and Drug Safety Evaluation (NIFDS) in Korea has established their own animal strains to help evaluate both efficacy and safety during new drug development. The objective of this study was to characterize the response of C57BL/6NKorl mice from the NIFDS compared with that of other mice originating from the USA and Japan in a chemical-induced diabetic condition. Multiple low-dose treatments with streptozotocin were used to generate a type-1 diabetic animal model which is closely linked to the known clinical pathology of this disease. There were no significantly different responses observed between the varying streptozotocin-induced type-1 diabetic models tested in this study. When comparing control and diabetic mice, increases in liver weight and disturbances in serum amino acids levels of diabetic mice were most remarkable. Although the relationship between type-1 diabetes and BCAA has not been elucidated in this study, the results, which reveal a characteristic increase in diabetic mice of all origins are considered worthy of further study.

A Method of Implementing Gateway Model Utilizing Remote Interrupts for Interworking of a Simulator with Multiple Real Systems (시뮬레이터의 복수 실체계 연동을 위한 리모트인터럽트 방식 게이트웨이 모델 구현 방안)

  • Kwon, Koo-Hyung;Hwang, Jae-Joon;Jeong, Hyun-Sook;Lim, Won-Gi;Yoon, Young-Deuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.57-63
    • /
    • 2013
  • This paper suggests a method to implement a gateway model that enables an OPNET simulator to interwork with multiple real systems. In general, for two or more real systems to interwork with a simulator, the real systems need to be connected to a switch to form a link to the simulator. This method, however, is useful only when the models in the simulator represent the real systems that have transceivers and have no mobility. Otherwise, the method is not applicable for interworking of multiple real systems. A method to implement a gateway for the case is presented in the paper. The method includes modules that process packets transmitted via remote interrupts.

Attitude control in spacecraft orbit-raising using a reduced quaternion model

  • Yang, Yaguang
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.427-441
    • /
    • 2014
  • Orbit-raising is an important step to place spacecraft from parking orbits into working orbits. Attitude control system design is crucial in the success of orbit-raising. Several text books have discussed this design and focused mainly on the traditional methods based on single-input single-output (SISO) transfer function models. These models are not good representations for many orbit-raising control systems which have multiple thrusters and each thruster has impact on the attitude defined by all outputs. Only one published article is known to use a more suitable multi-input multi-output (MIMO) Euler angle model in spacecraft orbit-raising attitude control system design. In this paper, a quaternion based MIMO model for the orbit-raising attitude control system design is proposed. The advantages of using quaternion based model for orbit-raising control system designs are (a) there is no need for mathematical transformations because the attitude measurements are normally given by quaternion, (b) quaternion based model does not depend on rotational sequences, which reduces the chance of human errors, and (c) the singular point of reduced quaternion model is the farthest from the operational point where linearization is performed. We will show that performance of quaternion model based design will be as good as the performance of Euler angle model based design for orbit-raising problem.

CEO Compensation and Unobserved Firm Performance in Pakistan

  • SHEIKH, Muhammad Fayyaz;BHUTTA, Aamir Inam;SULTAN, Jahanzaib
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2019
  • The study examines whether higher CEO compensation is related to unobserved future firm performance in an emerging market, Pakistan. Further, it extends its scope to analyzing the impact of group affiliation and ownership concentration on the relationship between CEO compensation and future firm performance. The study uses an unbalanced panel data consisting of 1508 firm-year observations from 225 non-financial listed companies in Pakistan Stock Exchange (PSX) for period 2005 to 2012. The multiple regression models adjusted to heteroskedasticity and autocorrelation in error terms are used. The study finds that, in general, CEO compensation is positively associated with future operating performance. However, higher CEO compensation leads to lower operating performance in firms that have lower ownership concentration and are affiliated with business groups. When firms are not affiliated with any group and have high ownership concentration, the relationship between excessive CEO compensation and future operating performance becomes insignificant. Given that efficient compensation packages may lead to long term value creation to shareholders and reduce agency problems, this study highlights an important moderating role of ownership concentration and group affiliation of the firms in emerging markets.

Freezing Time Prediction of Foods by Multiple Regression Analysis (다중회귀분석에 의한 식품의 동결시간 예측)

  • Jeong, Jin-Woong;Kim, Jong-Hoon;Park, Noh-Hyun;Lee, Seung-Hyun;Kim, Young-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.341-347
    • /
    • 1998
  • To develop simple and accurate analytical method for freezing time prediction of beef and tylose under various freezing conditions, freezing time (Y) was regressed against the reciprocal $(X_3)$ of difference of initial freezing point and freezing medium temperature, reciprocal $(X_4)$ of surface heat transfer coefficient, the initial temperature $(X_1)$ and thickness $(X_2)$ of samples which should cover most situations arising in frozen food industry. As results of the multiple regression analysis, equations were obtained as follows. $Y_{tylose}=3.45X_1+7642.84X_2+4642.67X_3+2946.89X_4-431.33\;(R^2=0.9568)$ and $Y_{beef}=0.68X_1+7568.98X_2+2430.78X_3+3293.26X_4-299.00\;(R^2=0.9897)$. These equations offered better results than Plank, Nagaoka and Pham's models, shown in satisfactory agreement with models of Cleland & Earle and Hung & Thompson when were compared to previous models, and the accuracy of its was very high as average absolute difference of about 10% in the difference between the fitted and experimental results. Also, thermal diffusivities of beef and tylose were measured as $4.43{\times}10^{-4}m^2/hr$ and $4.39{\times}10^{-4}m^2/hr$ at $6{\sim}7^{\circ}C$, $2.42{\times}10^{-3}m^2/hr$ and $3.32{\times}10^{-3}m^2/hr$ at $-10{\sim}-12^{\circ}C$. Initial freezing points of beef and tylose were $-1.2^{\circ}C\;and\;-0.6^{\circ}C$, respectively. Surface heat transfer coefficients were estimated $20.57\;W/m^2^{\circ}C$ with no-packing, $16.11\;W/m^2^{\circ}C$ with wrap packing and $13.07\;W/m^2^{\circ}C$ with Al-foil packing, and the cooling rate of immersion freezing method was about 10 times faster than that of air blast freezing method.

  • PDF