• Title/Summary/Keyword: multilevel optimization

Search Result 40, Processing Time 0.03 seconds

Optimal Design of Reinforced Concrete Frames using Sensitivity Analysis (설계민감도를 이용한 철근콘크리트 뼈대구조의 최적화)

  • Byun, Keun Joo;Choi, Hong Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 1989
  • In the design of reinforced concrete framed structures, which consist of various design variables, the objective and the constraint functions are formulated in complicated forms. Usually iterative methods have been used to optimize the design variables. In this paper, multilevel formulation is adopted, and design variables are selected in reduced numbers at each level, to reduce the iterative cycle and to accelerate the convergence rate. At level 1, elastic analysis is performed to get the upper and lower bounds of the redistributed design moments due to inelastic behavior of the frame. Then the design moments are taken as design variables and optimized at level 2, and the sizing variables are optimized at level 3. The optimization of redistributed moments is performed using the design sensitivity obtained at the level 2, and force approximation technique is used to reflect the variation of design variables in the lower level to the upper level. The design variables are selected in reduced numbers at each level, and the optimization formulation is simplified effectively. A cost function is taken as the objective function, and the constraints of the stress of the structures are derived from BSI CP 110 following limit state theory. Numerical examples are included to prove the effectiveness of the developed algorithm.

  • PDF

Elimination of Low Order Harmonics in Multilevel Inverters Using Genetic Algorithm

  • Salehi, Reza;Farokhnia, Naeem;Abedi, Mehrdad;Fathi, Seyed Hamid
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.132-139
    • /
    • 2011
  • The selective harmonic elimination pulse width modulation (SHEPWM) switching strategy has been applied to multilevel inverters to remove low harmonics. Naturally, the related equations do not have feasible solutions for some operating points associated with the modulation index (M). However, with these infeasible points, minimizing instead of eliminating harmonics is performed. Thus, harmful harmonics such as the $5^{th}$ harmonic still remains in the output waveform. Therefore, it is proposed in this paper to ignore solving the equation associated with the highest order harmonics. A reduction in the eliminated harmonics results in an increase in the degrees of freedom. As a result, the lower order harmonics are eliminated in more operating points. A 9-level inverter is chosen as a case study. The genetic algorithm (GA) for optimization purposes is used. Simulation results verify the proposed method.

Non-equal DC link Voltages in a Cascaded H-Bridge with a Selective Harmonic Mitigation-PWM Technique Based on the Fundamental Switching Frequency

  • Moeini, Amirhossein;Iman-Eini, Hossein;Najjar, Mohammad
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.106-114
    • /
    • 2017
  • In this paper, the Selective Harmonic Mitigation-PWM (SHM-PWM) method is used in single-phase and three-phase Cascaded H-Bridge (CHB) inverters in order to fulfill different power quality standards such as EN 50160, CIGRE WG 36-05, IEC 61000-3-6 and IEC 61000-2-12. Non-equal DC link voltages are used to increase the degrees of freedom for the proposed SHM-PWM technique. In addition, it will be shown that the obtained solutions become continuous and without sudden changes. As a result, the look-up tables can be significantly reduced. The proposed three-phase modulation method can mitigate up to the 50th harmonic from the output voltage, while each switch has just one switching in a fundamental period. In other words, the switching frequency of the power switches are limited to 50 Hz, which is the lowest switching frequency that can be achieved in the multilevel converters, when the optimal selective harmonic mitigation method is employed. In single-phase mode, the proposed method can successfully mitigate harmonics up to the 50th, where the switching frequency is 150 Hz. Finally, the validity of the proposed method is verified by simulations and experiments on a 9-level CHB inverter.

Improving the Solution Range in Selective Harmonic Mitigation Pulse Width Modulation Technique for Cascaded Multilevel Converters

  • Najjar, Mohammad;Iman-Eini, Hossein;Moeini, Amirhossein;Farhangi, Shahrokh
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1186-1194
    • /
    • 2017
  • This paper proposes an improved low frequency Selective Harmonic Mitigation-PWM (SHM-PWM) technique. The proposed method mitigates the low order harmonics of the output voltage up to the $50^{th}$ harmonic well and satisfies the grid codes EN 50160 and CIGRE-WG 36-05. Using a modified criterion for the switching angles, the range of the modulation index for non-linear SHM equations is improved, without increasing the switching frequency of the CHB converter. Due to the low switching frequency of the CHB converter, mitigating the harmonics of the converter up to the $50^{th}$ order and finding a wider modulation index range, the size and cost of the passive filters can be significantly reduced with the proposed technique. Therefore, the proposed technique is more efficient than the conventional SHM-PWM. To verify the effectiveness of the proposed method, a 7-level Cascaded H-bridge (CHB) converter is utilized for the study. Simulation and experimental results confirm the validity of the above claims.

Spatial Multilevel Optical Flow Architecture-based Dynamic Motion Estimation in Vehicular Traffic Scenarios

  • Fuentes, Alvaro;Yoon, Sook;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5978-5999
    • /
    • 2018
  • Pedestrian detection is a challenging area in the intelligent vehicles domain. During the last years, many works have been proposed to efficiently detect motion in images. However, the problem becomes more complex when it comes to detecting moving areas while the vehicle is also moving. This paper presents a variational optical flow-based method for motion estimation in vehicular traffic scenarios. We introduce a framework for detecting motion areas with small and large displacements by computing optical flow using a multilevel architecture. The flow field is estimated at the shortest level and then successively computed until the largest level. We include a filtering parameter and a warping process using bicubic interpolation to combine the intermediate flow fields computed at each level during optimization to gain better performance. Furthermore, we find that by including a penalization function, our system is able to effectively reduce the presence of outliers and deal with all expected circumstances in real scenes. Experimental results are performed on various image sequences from Daimler Pedestrian Dataset that includes urban traffic scenarios. Our evaluation demonstrates that despite the complexity of the evaluated scenes, the motion areas with both moving and static camera can be effectively identified.

Distributed Operation of Structural Design Process (구조 설계 프로세스의 분산운용)

  • Hwang Jin-Ha;Park Jong-Hoi;Kim Kyung-Ill
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.663-671
    • /
    • 2005
  • Distributed operation of overall structural design process, by which product and process optimization are implemented, is presented in this paper. The database-interconnected multilevel hybrid method, in which the conventional design method and the optimal design approach are combined, is utilized there. The method selectively takes the accustomed procedure of the conventional method in the conceptional framework of the optimal design. Design conditions are divided into primary and secondary criteria This staged application of design conditions reduces the computational burden for large complex optimization problems. Two kinds of numeric and graphic processes, are simultaneously implemented on the basis of concurrent engineering concepts in the distributed environment of PC networks. Numerical computation on server and graphic works on independent client are communicated through message passing. Numerical design is based on the optimization methodology and the drawing process is carried out by AutoCAD using the AutoLISP programming language. The prototype design experimentation for some steel trusses shows the validity and usability of the method. This study has sufficient adaptability and expandability in methodology, in that it is based on general theory and industry standard systems.

  • PDF

An Improved Multi-level Optimization Algorithm for Orthotropic Steel Deck Bridges (강바닥판교의 개선된 다단계 최적설계 알고리즘)

  • 조효남;이광민;최영민;김정호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.237-250
    • /
    • 2003
  • Since an orthotropic steel deck bridge has large number of design variables and shows complex structural behavior, it would be very difficult and impractical to directly use a Conventional Single Level (CSL) optimization algorithm for its optimum design. Thus, in this paper, an Improved Multi Level Design Synthesis (IMLDS) optimization algorithm is proposed to improve the computational efficiency. In the proposed IMLDS algorithm, a coordination method is introduced to divide the bridge into main girders and orthotropic steel deck with preserving the characteristics of the structural behavior. For an efficient optimization of the bridge, the IMLDS algorithm incorporates the various crucial approximation techniques such as constraints deletion, Automatic Differentiation (AD), stress reanalysis, and etc. In the case of orthotropic steel deck system, optimum design problems are characterized by mixed continuous discrete variables and discontinuous design space. Thus, a modified Genetic Algorithm (GA) is also applied to optimize discrete member design for orthotropic steel deck. From the numerical example, the efficiency and convergency of the IMLDS algorithm proposed in this paper is investigated. It may be positively stated that the IMLDS algorithm will lead to more effective and practical design compared with previous algorithms.

The configuration Optimization of Truss Structure (트러스 구조물의 형상최적화에 관한 연구)

  • Lim, Youn Su;Choi, Byoung Han;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.123-134
    • /
    • 2004
  • In this research, a multilevel decomposition technique to enhance the efficiency of the configuration optimization of truss structures was proposed. On the first level, the nonlinear programming problem was formulated considering cross-sectional areas as design variables, weight, or volume as objective function and behavior under multiloading condition as design constraint. Said nonlinear programming problem was transformed into a sequential linear programming problem. which was effective in calculation through the approximation of member forces using behavior space approach. Such approach has proven to be efficient in sensitivity analysis and different form existing shape optimization studies. The modified method of feasible direction (MMFD) was used for the optimization process. On the second level, by treating only shape design variables, the optimum problem was transformed into and unconstrained optimal design problem. A unidirectional search technique was used. As numerical examples, some truss structures were applied to illustrate the applicability. and validity of the formulated algorithm.

Integrated Structural Design Operation by Process Decomposition and Parallelization (프로세스 분할 병행에 의한 통합 구조설계 운용)

  • Hwang, Jin-Ha;Park, Jong-Hoi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.113-124
    • /
    • 2008
  • Distributed operation of overall structural design process, by which product optimization and process parallelization are simultaneously implemented, is presented in this paper. The database-interacted hybrid method, which selectively takes the accustomed procedure of the conventional method in the framework of the optimal design, is utilized here. The staged application of design constraints reduces the computational burden for large complex optimization problems. Two kinds of numeric and graphic processes are simultaneously implemented by concurrent engineering approach in the distributed environment of PC networks. The former is based on finite element optimization method and the latter is represented by AutoCAD using AutoLISP programming language. Numerical computation and database interaction on servers and graphic works on independent clients are communicated through message passing. The numerical experiments for some steel truss models show the validity and usability of the method. This study has sufficient adaptability and expandability, in that it is based on general methodologies and industry standard platforms.

Multi-Level Thresholding based on Non-Parametric Approaches for Fast Segmentation

  • Cho, Sung Ho;Duy, Hoang Thai;Han, Jae Woong;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.149-162
    • /
    • 2013
  • Purpose: In image segmentation via thresholding, Otsu and Kapur methods have been widely used because of their effectiveness and robustness. However, computational complexity of these methods grows exponentially as the number of thresholds increases due to the exhaustive search characteristics. Methods: Particle swarm optimization (PSO) and genetic algorithms (GAs) can accelerate the computation. Both methods, however, also have some drawbacks including slow convergence and ease of being trapped in a local optimum instead of a global optimum. To overcome these difficulties, we proposed two new multi-level thresholding methods based on Bacteria Foraging PSO (BFPSO) and real-coded GA algorithms for fast segmentation. Results: The results from BFPSO and real-coded GA methods were compared with each other and also compared with the results obtained from the Otsu and Kapur methods. Conclusions: The proposed methods were computationally efficient and showed the excellent accuracy and stability. Results of the proposed methods were demonstrated using four real images.