• Title/Summary/Keyword: multilayer perceptron (MLP)

Search Result 135, Processing Time 0.028 seconds

Automated detection of panic disorder based on multimodal physiological signals using machine learning

  • Eun Hye Jang;Kwan Woo Choi;Ah Young Kim;Han Young Yu;Hong Jin Jeon;Sangwon Byun
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.105-118
    • /
    • 2023
  • We tested the feasibility of automated discrimination of patients with panic disorder (PD) from healthy controls (HCs) based on multimodal physiological responses using machine learning. Electrocardiogram (ECG), electrodermal activity (EDA), respiration (RESP), and peripheral temperature (PT) of the participants were measured during three experimental phases: rest, stress, and recovery. Eleven physiological features were extracted from each phase and used as input data. Logistic regression (LoR), k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP) algorithms were implemented with nested cross-validation. Linear regression analysis showed that ECG and PT features obtained in the stress and recovery phases were significant predictors of PD. We achieved the highest accuracy (75.61%) with MLP using all 33 features. With the exception of MLP, applying the significant predictors led to a higher accuracy than using 24 ECG features. These results suggest that combining multimodal physiological signals measured during various states of autonomic arousal has the potential to differentiate patients with PD from HCs.

Utilizing Experiences of Supervisor in Sequential Learning for Multilayer Perceptron (지도 경험을 활용한 다계층 퍼셉트론의 순차적 학습 방법)

  • Lee, Jae-Young;Kim, Hwang-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.10
    • /
    • pp.723-735
    • /
    • 2010
  • Evaluating the level of achievement and providing the knowledge which is appropriate at the evaluated level have great influence in studying of the human beings. This shows the importance of the order of training and the training order should be considered in machine learning. In this research, to assess the influence of the order of training, we propose a method of controlling the order of training samples utilizing the experience of supervisor in the training of MLP. The supervisor finds out the current state of MLP using teaching experience and student evaluation, and then selects the most instructive sample for MLP in that state. We use CRF to represent and utilize the experience of supervisor. While the proposed method is similar to active learning in selecting samples, it is basically different in that selection is not to reduce the number of samples to be used but to assist the learning progress. The result from classification problem shows that the method is usually effective in terms of time taken in training in contrast to random selection.

Modelling of dissolved oxygen (DO) in a reservoir using artificial neural networks: Amir Kabir Reservoir, Iran

  • Asadollahfardi, Gholamreza;Aria, Shiva Homayoun;Abaei, Mehrdad
    • Advances in environmental research
    • /
    • v.5 no.3
    • /
    • pp.153-167
    • /
    • 2016
  • We applied multilayer perceptron (MLP) and radial basis function (RBF) neural network in upstream and downstream water quality stations of the Karaj Reservoir in Iran. For both neural networks, inputs were pH, turbidity, temperature, chlorophyll-a, biochemical oxygen demand (BOD) and nitrate, and the output was dissolved oxygen (DO). We used an MLP neural network with two hidden layers, for upstream station 15 and 33 neurons in the first and second layers respectively, and for the downstream station, 16 and 21 neurons in the first and second hidden layer were used which had minimum amount of errors. For learning process 6-fold cross validation were applied to avoid over fitting. The best results acquired from RBF model, in which the mean bias error (MBE) and root mean squared error (RMSE) were 0.063 and 0.10 for the upstream station. The MBE and RSME were 0.0126 and 0.099 for the downstream station. The coefficient of determination ($R^2$) between the observed data and the predicted data for upstream and downstream stations in the MLP was 0.801 and 0.904, respectively, and in the RBF network were 0.962 and 0.97, respectively. The MLP neural network had acceptable results; however, the results of RBF network were more accurate. A sensitivity analysis for the MLP neural network indicated that temperature was the first parameter, pH the second and nitrate was the last factor affecting the prediction of DO concentrations. The results proved the workability and accuracy of the RBF model in the prediction of the DO.

Recognition of characters on car number plate and best recognition ratio among their layers using Multi-layer Perceptron (다중퍼셉트론을 이용한 자동차 번호판의 최적 입출력 노드의 비율 결정에 관한 연구)

  • Lee, Eui-Chul;Lee, Wang-Heon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • The Car License Plate Recognition(: CLPR) is required in searching the hit-and-run car, measuring the traffic density, investigating the traffic accidents as well as in pursuing vehicle crimes according to the increasing in number of vehicles. The captured images on the real environment of the CLPR is contaminated not only by snow and rain, illumination changes, but also by the geometrical distortion due to the pose changes between camera and car at the moment of image capturing. We propose homographic transformation and intensity histogram of vertical image projection so as to transform the distorted input to the original image and cluster the character and number, respectively. Especially, in this paper, the Multilayer Perceptron Algorithm(: MLP) in the CLPR is used to not only recognize the charcters and car license plate, but also determine the optimized ratio among the number of input, hidden and output layers by the real experimental result.

Effect of Training Sequence Control in On-line Learning for Multilayer Perceptron (다계층 퍼셉트론의 온라인 학습에서 학습 순서 제어의 효과)

  • Lee, Jae-Young;Kim, Hwang-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.491-502
    • /
    • 2010
  • When human beings acquire and develop knowledge through education, their prior knowledge influences the next learning process. As this is a fact that should be considered in machine learning, we need to examine the effects of controlling the order of training sequence on machine learning. In this research, the role of the supervisor is extended to control the order of training samples, in addition to just instructing the target values for classification problems. The supervisor sequences the training examples categorized by SOM to the learning model which in this case is MLP. The proposed method is distinguished in that it selects the most instructive example from categories formed by SOM to assist the learning progress, while others use SOM only as a preprocessing method for training samples. The result shows that the method is effective in terms of the number of samples used and time taken in training.

Hydrologic Disaggregation Model using Neural Networks Technique (신경망기법을 이용한 수문학적 분해모형)

  • Kim, Sung-Won
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.79-97
    • /
    • 2010
  • The purpose of this research is to apply the neural networks models for the hydrologic disaggregation of the yearly pan evaporation(PE) data in Republic of Korea. The neural networks models consist of multilayer perceptron neural networks model(MLP-NNM) and support vector machine neural networks model(SVM-NNM), respectively. And, for the evaluation of the neural networks models, they are composed of training and test performances, respectively. The three types of data such as the historic, the generated, and the mixed data are used for the training performance. The only historic data, however, is used for the testing performance. The application of MLP-NNM and SVM-NNM for the hydrologic disaggregation of nonlinear time series data is evaluated from results of this research. Four kinds of the statistical index for the evaluation are suggested; CC, RMSE, E, and AARE, respectively. Homogeneity test using ANOVA and Mann-Whitney U test, furthermore, is carried out for the observed and calculated monthly PE data. We can construct the credible monthly PE data from the hydrologic disaggregation of the yearly PE data, and the available data for the evaluation of irrigation and drainage networks system can be suggested.

The Temporal Disaggregation Model for Nonlinear Pan Evaporation Estimation (비선형 증발접시 증발량 산정을 위한 시간적 분해모형)

  • Kim, Sungwon;Kim, Jung-Hun;Park, Ki-Bum;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.399-412
    • /
    • 2010
  • The goal of this research is to apply the neural networks models for the temporal disaggregation of the yearly pan evaporation (PE) data, Republic of Korea. The neural networks models consist of multilayer perceptron neural networks model (MLP-NNM) and generalized regression neural networks model (GRNNM), respectively. And, for the performances evaluation of the neural networks models, they are composed of training and test performances, respectively. The three types of data such as the historic, the generated, and the mixed data are used for the training performance. The only historic data, however, is used for the testing performance. From this research, we evaluate the application of MLP-NNM and GRNNM for the temporal disaggregation of nonlinear time series data. We should, furthermore, construct the credible monthly PE data from the temporal disaggregation of the yearly PE data, and can suggest the available data for the evaluation of irrigation and drainage networks system.

Downscaling Technique of the Monthly Precipitation Data using Support Vector Machine (지지벡터기구를 이용한 월 강우량자료의 Downscaling 기법)

  • Kim, Seong-Won;Kyoung, Min-Soo;Kwon, Hyun-Han;Kim, Hyung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.112-115
    • /
    • 2009
  • The research of climate change impact in hydrometeorology often relies on climate change information. In this paper, neural networks models such as support vector machine neural networks model (SVM-NNM) and multilayer perceptron neural networks model (MLP-NNM) are proposed statistical downscaling of the monthly precipitation. The input nodes of neural networks models consist of the atmospheric meteorology and the atmospheric pressure data for 2 grid points including $127.5^{\circ}E/35^{\circ}N$ and $125^{\circ}E/35^{\circ}N$, which produced the best results from the previous study. The output node of neural networks models consist of the monthly precipitation data for Seoul station. For the performances of the neural networks models, they are composed of training and test performances, respectively. From this research, we evaluate the impact of SVM-NNM and MLP-NNM performances for the downscaling of the monthly precipitation data. We should, therefore, construct the credible monthly precipitation data for Seoul station using statistical downscaling method. The proposed methods can be applied to future climate prediction/projection using the various climate change scenarios such as GCMs and RCMs.

  • PDF

Application of the Neural Networks Models for the Daily Precipitation Downscaling (일 강우량 Downscaling을 위한 신경망모형의 적용)

  • Kim, Seong-Won;Kyoung, Min-Soo;Kim, Byung-Sik;Kim, Hyung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.125-128
    • /
    • 2009
  • The research of climate change impact in hydrometeorology often relies on climate change information. In this paper, neural networks models such as generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM) are proposed statistical downscaling of the daily precipitation. The input nodes of neural networks models consist of the atmospheric meteorology and the atmospheric pressure data for 4 grid points including $127.5^{\circ}E/37.5^{\circ}N$, $127.5^{\circ}E/35^{\circ}N$, $125^{\circ}E/37.5^{\circ}N$ and $125^{\circ}E/35^{\circ}N$, respectively. The output node of neural networks models consist of the daily precipitation data for Seoul station. For the performances of the neural networks models, they are composed of training and test performances, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM performances for the downscaling of the daily precipitation data. We should, therefore, construct the credible daily precipitation data for Seoul station using statistical downscaling method. The proposed methods can be applied to future climate prediction/projection using the various climate change scenarios such as GCMs and RCMs.

  • PDF

Hybrid Approach of Texture and Connected Component Methods for Text Extraction in Complex Images (복잡한 영상 내의 문자영역 추출을 위한 텍스춰와 연결성분 방법의 결합)

  • 정기철
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.175-186
    • /
    • 2004
  • We present a hybrid approach of texture-based method and connected component (CC)-based method for text extraction in complex images. Two primary methods, which are mainly utilized in this area, are sequentially merged for compensating for their weak points. An automatically constructed MLP-based texture classifier can increase recall rates for complex images with small amount of user intervention and without explicit feature extraction. CC-based filtering based on the shape information using NMF enhances the precision rate without affecting overall performance. As a result, a combination of texture and CC-based methods leads to not only robust but also efficient text extraction. We also enhance the processing speed by adopting appropriate region marking methods for each input image category.