Browse > Article
http://dx.doi.org/10.12652/Ksce.2010.30.4B.399

The Temporal Disaggregation Model for Nonlinear Pan Evaporation Estimation  

Kim, Sungwon (동양대학교 철도토목학과)
Kim, Jung-Hun (동양대학교 대학원 철도토목학과)
Park, Ki-Bum (동양대학교 철도토목학과)
Kim, Hung Soo (인하대학교 사회기반시스템공학부)
Publication Information
KSCE Journal of Civil and Environmental Engineering Research / v.30, no.4B, 2010 , pp. 399-412 More about this Journal
Abstract
The goal of this research is to apply the neural networks models for the temporal disaggregation of the yearly pan evaporation (PE) data, Republic of Korea. The neural networks models consist of multilayer perceptron neural networks model (MLP-NNM) and generalized regression neural networks model (GRNNM), respectively. And, for the performances evaluation of the neural networks models, they are composed of training and test performances, respectively. The three types of data such as the historic, the generated, and the mixed data are used for the training performance. The only historic data, however, is used for the testing performance. From this research, we evaluate the application of MLP-NNM and GRNNM for the temporal disaggregation of nonlinear time series data. We should, furthermore, construct the credible monthly PE data from the temporal disaggregation of the yearly PE data, and can suggest the available data for the evaluation of irrigation and drainage networks system.
Keywords
pan evaporation; temporal disaggregation model; stochastic model; MLP-NNM; GRNNM;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 국토해양부(2007) 수자원 관리 종합정보 시스템 홈페이지 http://www.wamis.go.kr.
2 김성원, 김형수(2008) 증발접시 증발량과 알팔파 기준증발산량의 모형화를 위한 통합운영방법. 대한토목학회논문집, 대한토목학회, 제28권, 제2B호, pp. 199-213.
3 김성원, 이순탁, 조정석(2001) 중소하천유역에서 Hybrid Neural Networks에 의한 수문학적 예측. 한국수자원학회논문집, 한국수자원학회, 제34권, 제4호, pp. 303-316.
4 Bruton, J.M., McClendon, R.W., and Hoogenboom, G. (2000) Estimating daily pan evaporation with artificial neural networks. Trans. of the ASAE, ASAE, Vol. 43, No. 2, pp. 491-496.   DOI
5 Burian, S.J., Durrans, S.R., Nix, S.J., and Pitt, R.E. (2001) Training artificial neural networks to perform rainfall disaggregation. J. of Hydrol. Engr., ASCE, Vol. 6, No. 1, pp. 43-51.   DOI   ScienceOn
6 Burian, S.J., Durrans, S.R., Tomic, S., Pimmel, R.L., and Wai, C.N. (2000) Rainfall disaggregation using artificial neural networks. J. of Hydrol. Engr., ASCE, Vol. 5, No. 3, pp. 299-307.   DOI   ScienceOn
7 Choi, J., Socolofsky, S.A., and Olivera, F. (2008) Hourly disaggregation of daily rainfall in Texas using measured hourly precipitation at other locations. J. of Hydrol. Engr., ASCE, Vol. 13, No. 6, pp. 476-487.   DOI   ScienceOn
8 Deb, K. (2001) Multi-objective optimization using evolutionary algorithms, John Wiley & Sons, Chichester.
9 Deswal, S. and Pal, M. (2008) Artificial neural network based modeling of evaporation losses in reservoirs. Proceedings of World Academy of Science, Engineering and Technology, Vol. 29, pp. 279-283.
10 Eslamian, S.S., Gohari, S.A., Biabanaki, M., and Malekian, R. (2008) Estimation of monthly pan evaporation using artificial neural networks and support vector machines. J. of Appl. Sci., Vol. 8, No. 19, pp. 3497-3502.   DOI
11 Gundekar, H.G., Khodke, U.M., and Sarkar, S. (2008) Evaluation of pan coefficient for reference crop evapotranspiration for semiarid region. Irrig. Sci., Vol. 26, pp. 169-175.   DOI   ScienceOn
12 Gutierrez-Magness, A.L., and McCuen, R.H. (2004) Accuracy evaluation of rainfall disaggregation methods. J. of Hydrol. Engr., ASCE, Vol. 9, No. 2, pp. 71-78.   DOI   ScienceOn
13 Haykin, S. (2009) Neural networks and learning machines, 3rd Edition, Pearson Education Inc., NJ, USA.
14 Kim, S. and Kim, H.S. (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J. of Hydro., Vol. 351, pp. 299-317.   DOI
15 Jensen, M.E., Burman, R.D., and Allen, R.G. (1990) Evapotranspiration and irrigation water requirements, ASCE Manual and Report on Engineering Practice No. 70, ASCE, NY, pp. 332.
16 Keskin, M.E. and Terzi, O. (2006) Artificial neural networks models of daily pan evaporation. J. of Hydrol. Engr., ASCE, Vol. 11, No. 1, pp. 65-70.   DOI   ScienceOn
17 Kim, S. (2004) Neural Networks Model and Embedded Stochastic Processes for Hydrological Analysis in South Korea. KSCE J. of Civil Engr., KSCE, Vol. 8, No. 1, pp. 141-148.   DOI   ScienceOn
18 Kim, S., Kim, J.H., and Park, K.B. (2009) Statistical learning theory for the disaggregation of the climatic data. Proc. 33rd IAHR Congress 2009, IAHR/AIRH, Vancouver, British Columbia, Canada, pp. 1154-1162.
19 Kisi, O. (2006) Daily pan evaporation modeling using a neurofuzzy computing technique. J. of Hydro., Vol. 329, pp. 636-646.   DOI   ScienceOn
20 McCuen, R.H. (1993) Microcomputer applications in statistical hydrology, Prentice Hall, NJ, USA.
21 Molina Martinez, J.M., Martinez Alvarez, V., Gonzalez-Real, M.M., and Baille, A. (2005) A simulation model for predicting hourly pan evaporation for meteorological data. J. of Hydro., Vol. 318, pp. 250-261.
22 Neuroshell 2 (1993) Ward systems group, Inc., MD, USA.
23 Rahimi Khoob, A. (2009) Estimating daily pan evaporation using artificial neural network in a semi-arid environment. Theor. Appl. Climatol., Doi : 10.1007/s00704-008-0096-3.
24 Salas, J.D., Delleur, J.R., Yevjevich, V., and Lane, W.L. (1980) Applied modeling of hydrologic time series, Water Resor. Pub., Littleton, CO, USA.
25 Tan, K.S., Chiew, F.H.S., and Grayson, R.B. (2007) A steepness index unit volume flood hydrograph approach for sub-daily flow disaggregation. Hydro. Process., Vol. 21, pp. 2807-2816.   DOI   ScienceOn
26 Salas, J.D., Smith, R.A., Tabios III, G.Q., and Heo, J.H. (2001) Statistical computing techniques in water resources and environmental engineering, Unpublished book in CE622, Colorado State University, Fort Collins, CO, USA.
27 Specht, D.F. (1991) A general regression neural network. IEEE Trans. on Neural Networks, Vol. 2, No. 6, pp. 568-576.   DOI   ScienceOn
28 Sudheer, K.P., Gosain, A.K., Rangan, D.M., and Saheb, S.M. (2002) Modeling evaporation using an artificial neural network algorithm. Hydro. Process., Vol. 16, pp. 3189-3202.   DOI   ScienceOn
29 Tsoukalas, L.H. and Uhrig, R.E. (1997) Fuzzy and neural approaches in engineering, John Wiley & Sons Incorporated, New York, NY, USA.
30 Wasserman, P.D. (1993) Advanced methods in neural computing, Van Nostrand Reinhold, New York, NY, USA.
31 Zhang, J., Murch, R.R., Ross, M.A., Ganguly, A.R., and Nachabe, M. (2008) Evaluation of statistical rainfall disaggregation methods using rain-gauge information for west-central florida. J. of Hydrol. Engr., ASCE, Vol. 13, No. 12, pp. 1158-1169.   DOI   ScienceOn