• 제목/요약/키워드: multilayer neural network

검색결과 276건 처리시간 0.029초

다층 신경회로망을 이용한 선형시스템의 식별 (Linear System Identification Using Multi-layer Neural Network)

  • 조규상;김경기
    • 전자공학회논문지B
    • /
    • 제32B권3호
    • /
    • pp.130-138
    • /
    • 1995
  • In this paper, a Novel Approach is Proposed which Identifies linear system Parameters Using a multilayer feedforward neural network trained with backpropagation algorithm. The parameters of linear system can be represented by x9t)/x(t) and x(t)/u(t). Thud, its parameters can be represented in terms of the derivative of output with respect to input of parameters can be represented in terms of the derivative of output with respect to input of trained neural network which is a function of weights and output of neurons. Mathematical representation of the proposed approach is derived, and its validity is shown by simulation results on 2-layer and 3-layer neural network.

  • PDF

HAI 제어기에 의한 IPMSM 드라이브의 속도 추정 및 제어 (Speed Estimation and Control of IPMSM Drive with HAI Controller)

  • 이홍균;이정철;정동화
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권4호
    • /
    • pp.220-227
    • /
    • 2005
  • This paper presents hybrid artificial intelligent(HAI) controller based on the vector controlled IPMSM drive system. And it is based on artificial technologies that adaptive neural network fuzzy(A-NNF) is to speed control and artificial neural network(ANN) is to speed estimation. The salient feature of this technique is the HAI controller The hybrid action tolerates any inaccuracies in the fuzzy logic assignment rules or in the neural network stationary weights. Speed estimators using feedforward multilayer and artificial neural network(ANN) are compared. The back-propagation algorithm is easy to derived the estimated speed tracks precisely the actual motor speed. This paper presents the theoretical analysis as well as the simulation results to verify the effectiveness of the new hybrid intelligent control.

Deep Neural Network Models to Recommend Product Repurchase at the Right Time : A Case Study for Grocery Stores

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • 제25권2호
    • /
    • pp.73-90
    • /
    • 2018
  • Despite of increasing studies for product recommendation, the recommendation of product repurchase timing has not yet been studied actively. This study aims to propose deep neural network models usingsimple purchase history data to predict the repurchase timing of each customer and compare performances of the models from the perspective of prediction quality, including expected ROI of promotion, variability of precision and recall, and diversity of target selection for promotion. As an experiment result, a recurrent neural network (RNN) model showed higher promotion ROI and the smaller variability compared to MLP and other models. The proposed model can be used to develop a CRM system that can offer SMS or app-based promotionsto the customer at the right time. This model can also be used to increase sales for product repurchase businesses by balancing the level of ordersas well as inducing repurchases by customers.

가변구조 시스템을 위한 신경회로망 학습 알고리즘 (Neural Network Learning Algorithm for Variable Structure System)

  • 조정호;이동욱;김영태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.401-403
    • /
    • 1996
  • In this paper, a new control strategy is presented that combines sliding mode control theory with a neural network. Sliding mode control theory requires the complete knowledge of the dynamics of the controlled system. However, in practice, one often bas only a small number of state measurements. This could be a serious limitation on the practical usefulness of sliding mode control theory. A multilayer neural network is employed to solve this kind of problem. The neural network serves as a compensator without a prior knowledge about the system. The proposed control algorithm is applied to a class of uncertain nonlinear system. The robustness against parameter uncertainty, nonlinearity and external disturbances, and the effectiveness is verified by the simulation results.

  • PDF

혼합형 신경회로망을 이용한 얼굴 인식 (Face Recognition using a Hybrid Neural Network)

  • 정경권;임중규;김주웅;이현관;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.800-803
    • /
    • 2006
  • 본 논문에서는 여러 환경 변화에 민감한 특성을 가지고 있는 얼굴 인식의 성능 향상을 위해 혼합형 신경회로망 방식을 제안한다. 제안한 방식은 SOM과 LVQ를 이용하여 얼굴 인식의 성능을 향상시킨다. 제안한 방식의 유용성을 확인하기 위하여 ORL의 얼굴 영상을 이용하여 시뮬레이션을 수행하였다. 시뮬레이션 결과 제안한 방식이 고유얼굴 방식이나 은닉 마코프 모델 방식, 다층 신경회로망 방식보다 우수함을 확인하였다.

  • PDF

입력 추정기로서의 신경회로망을 이용한 기동 표적 추적 시스템 설계 (Design of maneuvering target tracking system using neural network as an input estimator)

  • 김행구;진승희;박진배;주영훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.524-527
    • /
    • 1997
  • Conventional target tracking algorithms based on the linear estimation techniques perform quite efficiently when the target motion does not involve maneuvers. Target maneuvers involving short term accelerations, however, cause a bias in the measurement sequence. Accurate compensation for the bias requires processing more samples of which adds to the computational complexity. The primary motivation for employing a neural network for this task comes from the efficiency with which more features can be as inputs for bias compensation. A system architecture that efficiently integrates the fusion capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described. The parallel processing capability of a properly trained neural network can permit fast processing of features to yield correct acceleration estimates and hence can take the burden off the primary Kalman filter which still provides the target position and velocity estimates.

  • PDF

WFSO 알고리즘을 이용한 인공 신경망과 합성곱 신경망의 학습 (Training Artificial Neural Networks and Convolutional Neural Networks using WFSO Algorithm)

  • 장현우;정성훈
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권5호
    • /
    • pp.969-976
    • /
    • 2017
  • 본 논문에서는 최적화 알고리즘으로 개발된 WFSO(Water Flowing and Shaking Optimization) 알고리즘을 사용한 인공신경망 과합성공 신경망의 학습 방법을 제안한다. 최적화 알고리즘은 다수의 후보 해를 기반으로 탐색해 나가기 때문에 일반적으로 속도가 느린 단점이 있으나 지역 최소값에 거의 빠지지 않고 병렬화가 용이하며 미분 불가능한 활성화함수를 갖는 인공신경망 학습도 가능하고 구조와 가중치를 동시에 최적화 할 수 있는 장점이 있다. 본 논문에서는 WFSO 알고리즘을 인공신경망 학습에 적용하는 방법을 설명하고 다층 인공신경망과 합성곱 신경망에서 오류역전파 알고리즘과 성능을 비교한다.

Multilayer Perceptron Model to Estimate Solar Radiation with a Solar Module

  • Kim, Joonyong;Rhee, Joongyong;Yang, Seunghwan;Lee, Chungu;Cho, Seongin;Kim, Youngjoo
    • Journal of Biosystems Engineering
    • /
    • 제43권4호
    • /
    • pp.352-361
    • /
    • 2018
  • Purpose: The objective of this study was to develop a multilayer perceptron (MLP) model to estimate solar radiation using a solar module. Methods: Data for the short-circuit current of a solar module and other environmental parameters were collected for a year. For MLP learning, 14,400 combinations of input variables, learning rates, activation functions, numbers of layers, and numbers of neurons were trained. The best MLP model employed the batch backpropagation algorithm with all input variables and two hidden layers. Results: The root-mean-squared error (RMSE) of each learning cycle and its average over three repetitions were calculated. The average RMSE of the best artificial neural network model was $48.13W{\cdot}m^{-2}$. This result was better than that obtained for the regression model, for which the RMSE was $66.67W{\cdot}m^{-2}$. Conclusions: It is possible to utilize a solar module as a power source and a sensor to measure solar radiation for an agricultural sensor node.

Differentiation among stability regimes of alumina-water nanofluids using smart classifiers

  • Daryayehsalameh, Bahador;Ayari, Mohamed Arselene;Tounsi, Abdelouahed;Khandakar, Amith;Vaferi, Behzad
    • Advances in nano research
    • /
    • 제12권5호
    • /
    • pp.489-499
    • /
    • 2022
  • Nanofluids have recently triggered a substantial scientific interest as cooling media. However, their stability is challenging for successful engagement in industrial applications. Different factors, including temperature, nanoparticles and base fluids characteristics, pH, ultrasonic power and frequency, agitation time, and surfactant type and concentration, determine the nanofluid stability regime. Indeed, it is often too complicated and even impossible to accurately find the conditions resulting in a stabilized nanofluid. Furthermore, there are no empirical, semi-empirical, and even intelligent scenarios for anticipating the stability of nanofluids. Therefore, this study introduces a straightforward and reliable intelligent classifier for discriminating among the stability regimes of alumina-water nanofluids based on the Zeta potential margins. In this regard, various intelligent classifiers (i.e., deep learning and multilayer perceptron neural network, decision tree, GoogleNet, and multi-output least squares support vector regression) have been designed, and their classification accuracy was compared. This comparison approved that the multilayer perceptron neural network (MLPNN) with the SoftMax activation function trained by the Bayesian regularization algorithm is the best classifier for the considered task. This intelligent classifier accurately detects the stability regimes of more than 90% of 345 different nanofluid samples. The overall classification accuracy and misclassification percent of 90.1% and 9.9% have been achieved by this model. This research is the first try toward anticipting the stability of water-alumin nanofluids from some easily measured independent variables.

신경망을 이용한 초등학생 컴퓨터 활용 능력 예측 (Prediction of Elementary Students' Computer Literacy Using Neural Networks)

  • 오지영;이수정
    • 정보교육학회논문지
    • /
    • 제12권3호
    • /
    • pp.267-274
    • /
    • 2008
  • 신경망은 데이터로부터 반복적인 학습 과정을 통해 숨어 있는 패턴을 찾아내고, 새로운 데이터의 목표값에 대한 정확한 예측에 유용한 모델링 기법이다. 본 논문은 개인적인 특성, 가정 사회적 환경, 타 교과 성적을 이용하여 학생의 컴퓨터 활용 능력 예측을 위한 다층 인식모형(MLP) 신경망을 구축하였다. 신경망의 인식률은 예측 방법으로 널리 활용되고 있는 로지스틱 회귀분석 모델과 비교하였다. 개발한 신경망에 대한 실험 결과, 개인적인 특성이 학생들의 컴퓨터 활용 능력을 가장 잘 설명하는 요소이며, 반면 가정 사회적 환경은 가장 낮은 예측 요소임을 발견하였다. 또한 본 연구의 신경망 모델은 회귀분석보다 더욱 높은 인식률을 나타냈다.

  • PDF