• 제목/요약/키워드: multicarrier system

검색결과 104건 처리시간 0.025초

A Study on Feedforward System for IMT-2000

  • Jeon Joong-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.505-513
    • /
    • 2006
  • A linear power amplifier is particularly emphasized on the system using a linear modulations, such as 16QAM and QPSK with pulse shaping. because intermodulation distortion which causes adjacent channel interference and co-channel interference is mostly generated in a nonlinear power amplifier. In this paper, parameters of a linearization loop, such as an amplitude imbalance a phase imbalance and a delay mismatch, are briefly analyzed to get a specific cancellation performance and linearization bandwidth. Experimental results are presented for IMT-2000 frequency band. The center frequency of the feedforward amplifier is 2140 MHz with 60 MHz bandwidth. When the average output power of feedforward amplifier is 20 Watt. the intermodulation cancellation performance is more than 21 dB. In this case, the output power of feedforward amplifier reduced 3.5 dB because of extra delay line loss and coupling loss. The feedforward amplifier efficiency is more than 7.2 % for multicarrier signals, 59 dBc for ACPR.

Performance Analysis of MCDD in an OBP Satellite Communications System

  • Kim, Sang-Goo;Yoon, Dong-Weon
    • Journal of Communications and Networks
    • /
    • 제12권6호
    • /
    • pp.529-532
    • /
    • 2010
  • Multi-carrier demultiplexer/demodulator (MCDD) in an on-board processing (OBP) satellite used for digital multimedia services has two typical architectures according to the channel demultiplexing procedure: Multistage multi-carrier demultiplexer (M-MCD) or poly-phase fast Fourier transform (PPF). During the channel demultiplexing, phase and quantization errors influence the performance of MCDD; those errors affect the bit error rate (BER) performance of M-MCD and PPF differently. In this paper, we derive the phase error variances that satisfy the condition that M-MCD and PPF have the same signal to noise ratio according to quantization bits, and then, with these results, analyze the BER performances of M-MCD and PPF. The results provided here may be a useful reference for the selection of M-MCD or PPF in designing the MCDD in an OBP satellite communications system.

A Study on Feedforward System for IMT-2000

  • Jeon, Joong-Sung;Choi, Dong-Muk;Kim, Min-Jung
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1176-1185
    • /
    • 2005
  • A linear power amplifier is particularly emphasized on the system using a linear modulations, such as 16QAM and QPSK with pulse shaping, because intermodulation distortion which causes adjacent channel interference and co-channel interference is mostly generated in a nonlinear power amplifier. In this paper, parameters of a linearization loop, such as an amplitude imbalance, a phase imbalance and a delay mismatch, are briefly analyzed to get a specific cancellation performance and linearization bandwidth. Experimental results are presented for IMT-2000 frequency band. The center frequency of the feedforward amplifier is 2140 MHz with 60 MHz bandwidth. When the average output power of feedforward amplifier is 20 Watt, the intermodulation cancellation performance is more than 21 dB. In this case, the output power of feedforward amplifier reduced 3.5 dB because of extra delay line loss and coupling loss. The feedforward amplifier efficiency is more than 7.2 % for multicarrier signals, 59 dBc for ACPR.

  • PDF

PERFORMANCE IMPROVEMENT OF IMPULSE RAD10S IN MULTICARRIER ENVIRONMENTS

  • Lee, Hojoon;Byungchil Han;Sungbin Im
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.144-147
    • /
    • 2000
  • In this paper, we propose two receiver structures of the impulse radio (IR) system to improve its performance in multipath environments. Recently, the impulse radio system has drawn much attention for future high-speed wire-less communication services. The conventional IR receiver directly correlates received signals with the ideal reference waveform, which results in performance degradation in multipath environments. The Key idea of the proposed receiver structures is to reflect the multipath Characteristics into the IR receiver. One is to deconvolve the received waveform with estimates of the multipath gains to obtain the transmitted waveform while the other is to modify the reference waveform of the correlator according to the estimates of the multipath gains. We examine the performance of the proposed schemes for the statistical indoor wireless communication channel model using computer simulation.

  • PDF

Enhanced FCME Thresholding for Wavelet-Based Cognitive UWB over Fading Channels

  • Hosseini, Haleh;Fisal, Norsheila;Syed-Yusof, Sharifah Kamilah
    • ETRI Journal
    • /
    • 제33권6호
    • /
    • pp.961-964
    • /
    • 2011
  • The cognitive ultra-wideband (UWB) network detects interfering narrowband systems and adapts its configuration accordingly. An inherently adaptive and flexible candidate for cognitive UWB transmission is the wavelet packet multicarrier modulation (WPMCM). In this letter, we use an enhanced forward consecutive mean excision thresholding algorithm to tackle the noise uncertainty in the wavelet-based sensing of WPMCM systems, and mathematical analysis is performed for primary user channel fading. As a benchmark, we compare the proposed system with a conventional fast Fourier transformation-based system, and performance investigation proves significant improvements when primary and secondary links are subjected to multipath fading and noise.

Cyclic Prefixed CI/OFDM 시스템과 단일반송파 시스템의 ABR 비교 분석 (Achievable Bit Rate Comparison of Cyclic Prefixed CI/OFDM System and Single Carrier System)

  • 장휴이;황재호;황대근;김재명
    • 한국위성정보통신학회논문지
    • /
    • 제5권1호
    • /
    • pp.6-16
    • /
    • 2010
  • Since OFDM system suffers from high peak-to average power ratio(PAPR) drawbacks, more energy has been converted to seek for a new substitutable system which can maintain OFDM system's inherent virtues while avoid its defects. Consequently, a new multicarrier system called as CI/OFDM system has been proposed which applied carrier interferometry(CI) code to OFDM system. Due to its low PAPR advantage and orthogonal property, it has received more and more attention. Simultaneously, an old technique called single carrier(SC) system has retaken its attractions for the same purposes. This paper analyzes two cyclic prefixed transmission schemes variants of OFDM system: 1.carrier interferometry-Orthogonal Frequency-Division Multiplexing (CI/OFDM); 2. Cyclic prefixed single carrie(CP-SC) with frequency domain equalization. We compare the achievable bit rate transmission of the two systems in terms of signal to noise ratio(SNR) by mathematical derivation. We demonstrated that CI/OFDM achieves a bit higher transmission bit rate to that of the CP-SC with frequency domain equalizer.

A Parallel Combinatory OFDM System with Weighted Phase Subcarriers

  • Zheng, Hui;Shrestha, Robin;Hwang, Jae-Ho;Kim, Jae-Mong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권1호
    • /
    • pp.322-340
    • /
    • 2012
  • Orthogonal Frequency Division Multiplexing (OFDM) is usually regarded as a spectral efficient multicarrier modulation technique, yet it suffers from a high peak-to-average power ratio (PAPR) problem. Among all the existing PAPR reduction techniques in OFDM systems, side information based PAPR reduction techniques such as partial transmit sequence (PTS) and selective mapping (SLM) schemes, have attracted the most attention. However, the transmission of side information results in somewhat spectral loss and this does not significantly improve the bit error rate (BER) performance. Parallel combinatory (PC) OFDM yields higher spectral efficiency (SE) and better BER performance on Gaussian channels,while is a little but not obvious PAPR improvement over the ordinary OFDM system. This investigation aimed to design a 'perfect' OFDM system. We introduce the side information to rotate the subcarrier phases of our novel PC-OFDM system structure, and call this new system the SIPC(Side information based Parallel Combinatory)-OFDM system. The proposed system achieves better PAPR and SE performance. In addition, considering the tradeoff of system parameters, the proposed system also has the properties of a higher BER.

Another View Point on the Performance Evaluation of an MC-DS-CDMA System

  • Chen, Joy Iong-Zong;Hsieh, Tai Wen
    • Journal of Communications and Networks
    • /
    • 제11권3호
    • /
    • pp.240-247
    • /
    • 2009
  • The results of performance analysis by adopting the channel scenarios characterized as Weibull fading for an multicarrierdirect sequence-coded division multiple access (MC-DS-CDMA) system are proposed in this investigation. On the other hand, an approximate simple expression with the criterion of bit error rate (BER) versus signal-to-noise ratio (SNR) method is derived for an MC-DS-CDMA system combining with maximal ratio combining (MRC) diversity based on the moment generating function (MGF) formula of Weibull statistics, and it associates with an alternative expression of Gaussian Q-function. Besides, the other point of view on the BER performance evaluation of an MC-DS-CDMA system is not only the assumption of both single-user and multi-user cases applied, but the phenomena of partial band interference (PBI) is also included. Moreover, in order to validate the accuracy in the derived formulas, some of the system parameters, such as Weibull fading parameter (${\beta}$), user number (K), spreading chip number (N), branch number (L), and the PBI (JSR) values, etc., are compared with each other in the numerical results. To the best of author's knowledge, it is a brand new idea which proposes the evaluation of the system performance for an MC-DS-CDMA system over the point of view with Weibull fading channel.

FMT 시스템의 ISI 추정치 기반 등화기법 (An Equalization Method in Filtered Multitone Modulation based on the ISI Estimation)

  • 유정훈
    • 한국멀티미디어학회논문지
    • /
    • 제12권9호
    • /
    • pp.1316-1322
    • /
    • 2009
  • 광대역 통신을 위한 효율적 전송 방식으로 다중 반송파 시스템이 각광을 받고 있다. Filtered multitone(FMT) 시스템은 orthogonal frequency division multplexing(OFDM)과 달리 시간영역에서 필터의 길이가 여러 심볼 주기에 걸쳐 있으며, 이러한 긴 주기의 필터 사용으로 다중경로 환경에서 intersymbol interference(ISI)에 의한 성능열화 현상이 발생한다. 본 논문에서는 무선 채널 환경에서 필터에 의하여 발생한 ISI 성분을 제거하는 FMT 시스템을 위한 간단한 등화기법을 제안한다. 제안하는 등화기법은 직전 심볼과 직후 심볼에서 발생하는 ISI값을 추정하여, 현재 심볼에서 추정된 값을 빼줌으로써 ISI 성분을 제거해주는 방식으로 동작한다. 제안된 등화기의 성능을 이론적으로 분석하여 성능의 우수함을 보였으며, 컴퓨터 시뮬레이션을 통하여 제안된 시스템의 성능이 lower bound에 근접함을 보여주었다.

  • PDF

주파수 선택성 다중경로 페이딩 채널에서 Near/Far 영향을 받는 Multi-Carrier CDMA Trellis Coded 16 QAM 시스템의 성능해석 (Performance Analysis of Multi-Carrier CDMA Trellis coded 16 QAM System with Near/Far Effect in Frequency Selective Multipath Fading Channel)

  • 노재성;강희조;김춘길;김언곤;조성준
    • 한국통신학회논문지
    • /
    • 제25권3A호
    • /
    • pp.353-361
    • /
    • 2000
  • The performance of a multi-carrier CDMA system is analyzed considering frequency selective multipath fading and Near/Far effects. The number of multicarrier, multiuser, and arms of RAKE receiver, and the decay ratio of frequency selective multipath fading are used as a parameter for the performance analysis. More over, the distribution and the strength of multiuser interference are also considered. To evaluated the Near/Far effects in a multi-carrier CDMA system, three distribution models are assumed. In the first model. interference to carrier Ratio, I/C, ranges form -4 dB to 4dB, and at each 2 dB interval 20 % of multiuser is assumed to be uniformly distributed. In the second one, I/C ranges from -2 dB to 2 dB, and 33.3% of multiuser is assumed to be equally dispersed at each 2dB interval. The third model is 0 dB of I/C, that is, with perfect power control, multiuser are assumed to be evenly located. In this paper, multi-carrier CDMA system adoption RAKE receiver is proposed to mitigate the frequency selective multipath fading. Form the results, the third model(i.e. perfect power control)shows the best performance, and the narrower range of I/C causes the less effects to the desired signal, which reads to the better performance.

  • PDF