• Title/Summary/Keyword: multibody dynamic

Search Result 293, Processing Time 0.028 seconds

A Study of Dynamic Modeling of a Magnetic Levitation Vehicle (자기부상열차의 동적 모델링 연구)

  • 한형석;조홍재;김동성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.160-166
    • /
    • 2003
  • Interest in advanced vehicles results in correspondingly increased interest in modeling and simulation of the dynamic behavior of Maglev-type vehicle systems. DADS is a program especially suited for the analysis of multibody mechanical systems. This paper demonstrates the application of DADS to the dynamic modeling and simulation of such advanced vehicles. A brief description is made of the modeling requirements of magnetically levitated systems, along with a summary of some of the related capabilities of DADS. As a case study, an analysis of a vehicle based on the UTM01 system is presented. This paper shows that the presented modeling technique is applicable to the dynamic characteristics evaluation and control law design of Maglev- type vehicles.

Dynamic analysis of an excavator using experimental data (시험자료를 이용한 굴삭기의 동역학 해석)

  • 유완석;김외조;이만형;윤경화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1150-1157
    • /
    • 1994
  • This paper presents dynamic analysis of a hydraulic excavator based on experimental data. A three dimensional multibody model of a hydraulic excavator is modeled for the computer simulation. The hydraulic pressures acting on the cylinders are measured from experiments, and the forces exerting on the cylinders are calculated from the measured pressures. Using these forces, the dynamic analysis of the excavator is carried out to regenerate the motion in the computer simulation. A proper operation scheme is assumed to match the computational result and the experiment. The DADS program is used for the dynamic analysis.

Multibody Dynamic Analysis of a Tracked Vehicle on Soft Cohesive Soil (연약지반 무한궤도차량의 다물체 동적거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.69-74
    • /
    • 2007
  • This paper is concerned about the dynamic analysis of an underwater test miner, which operates on cohesive soil. The test miner consists of tracked vehicles and a pick-up device. The motion of the pick-up device, relative to the vehicle chassis, is controlled by two pairs of hydraulic cylinders. The test miner is modeled by means of commercial software. A terramechanics model of cohesive soft soil is implemented with the software and applied to a dynamic analysis of the test miner model. The dynamic responses of the test miner are studied with respect to four different types of terrain conditions.

Structural Dynamic Characteristics of Modular Deployable Reflectors and Booms for the Large Mesh Antennas (대형 메쉬 안테나 개발을 위한 모듈식 반사판 및 붐 구조의 동적 특성 분석)

  • Roh, Jin-Ho;Jung, Hwa-Young;Kang, Deok-Soo;Kim, Ki-Seung;Yun, Ji-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.691-699
    • /
    • 2022
  • Large aperture antennas with long focal lengths in space have important application for telecommunications, Earth observation and science missions. This paper aims to understand the dynamics of deployment of large mesh antennas and to provide a multibody model for determining the driving forces for the design of reflectors and booms. The modular deployable reflector and boom are designed based on the deployment unit cell. A multibody dynamic model is formulated with Kane's equation and simulated using the pseudo upper triangular decomposition (PUTD) method for solving the constrained problem. Based on the multibody dynamic model, the kinetics of the deployment, the motor driving forces, and the structural dynamic deformation are investigated.

Optimal Design of a Circuit Breaker for Satisfying the Specified Dynamic Characteristics (규정된 동특성을 만족하기 위한 회로차단기의 최적설계)

  • Ahn, K.Y.;Cho, S.S.;Oh, I.S.;Kim, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.859-864
    • /
    • 2001
  • In a vacuum circuit breaker mechanism, a spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of electric contacts. Because the opening and the closing dynamics of electric contacts is determined by such a linkage system, the stiffness, free length and attachment points of a spring become the important design parameters. In this paper, based on the dynamic model of the circuit breaker using a multibody dynamic program ADAMS, a optimal design procedure of determining the spring design parameters is presented. The proposed procedure is applied to the design of an opening spring for satisfying the specified opening characteristics.

  • PDF

Dynamic Analysis and Experimental Verification of Brake Judder considering Quality (품질을 고려한 브레이크 저더의 동역학 해석 및 시험 검증)

  • 김효식;임홍재
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.365-370
    • /
    • 2003
  • The problem of brake judder is typically caused by quality defects in manufacturing. This quality problem, however, can't be controlled deterministically and requires analyses and designs considering uncertainties. This paper presents a method for dynamic analysis of a brake judder considering uncertainties. Firstly, quality defects, which come from the uncertainties, are determined by examination of symptoms of the brake judder quality problem. Effective quality defects are selected by investigation of process capability and comparison of sensitivity of each quality defects and noise levels of the effective quality defects are determined. Secondly, flexible multibody dynamic analysis and finite element analysis according to the proposed method are carried out. Finally, The analysis results are compared with the test results with noise levels of the effective quality defects.

  • PDF

A Study on the Simulation of Operational Characteristics of Industrial Robot for Automated Manufacturing System (생산자동화 시스템을 위한 산업용 로봇의 운전특성 시뮬레이션에 관한 연구)

  • Kim, Jin-Kwang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.405-410
    • /
    • 2017
  • This paper deals with 3D simulation of industrial robot for automated manufacturing system. In order to evaluate the operational characteristics of the industrial robot system in the worst case motion scenario, flexible - rigid multibody analysis was performed. Then, the rigid body dynamics analysis was performed and the results were compared with the flexible - rigid multibody analysis. Modal analysis was also performed to confirm the dynamic characteristics of the robot system. In the case of the flexible-rigid multibody simulation, only the structural members of interest were modeled as elastic bodies to confirm the stress state. The remaining structural members were modeled as rigid bodies to reduce computer resources.

Study of of Flexible Multibody Dynamics with Rotary Inertia (회전관성 효과를 고려한 탄성 다물체 동력학에 관한 연구)

  • 김성수
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.287-296
    • /
    • 1996
  • A virtual work form of flexible multibody dynamic formulation with rotary inertia has been derived. For the analysis of large flexible multibody systems, deformation modal coordinates have been employed to represent coupled motion between gross and vibrational motion. For the efficient evaluation of the entries in the mass matrix, a flexible body has been treated as a collection of mass points. The rotary inertia was generated from the consistent mass matrix in a finite element model. Deformation mode shapes were obtained from finite element analysis. Bending and twisting vibration analyses of a cantilever have been carried out to see rotary inertia effects. A space flexible robot simulation has been also carried out to show effectiveness of the proposed formulation. This formulation is effective to the model that consists of beam, plate, or shell element that contains rotational degree of freedom at the nodal point. It is also effective to the flexible body model to which a large lumped rotary inertia is attached.

  • PDF

Dynamic Analysis of Wave Energy Generation System by Using Multibody Dynamics (다물체 동역학을 이용한 파력발전기의 동적거동 분석)

  • Jang, Jin-Seok;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1579-1584
    • /
    • 2011
  • This paper discusses an energy system that can convert wave energy into electrical energy. This wave energy generation system is movable and has 12 arms and one generator. A multibody dynamic model for this system is established by using kinematic constraints. A gear mechanism, several kinematic constraints, and force elements are included in the model. Wave forces are obtained numerically from the time domain formulation based on the Morison equation. The MSC/ADAMS program is employed to carry out dynamic analysis of the wave energy generation system. The dynamic behavior responses of this system are analyzed for design verification. According to the results of the dynamic analysis, the yaw motion is relatively stable and kinetic energy sufficient to generate electrical energy is obtained when the wave height exceeds 1m.