• Title/Summary/Keyword: multi-unit event

Search Result 23, Processing Time 0.03 seconds

Multi-unit Level 2 probabilistic safety assessment: Approaches and their application to a six-unit nuclear power plant site

  • Cho, Jaehyun;Han, Sang Hoon;Kim, Dong-San;Lim, Ho-Gon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1234-1245
    • /
    • 2018
  • The risk of multi-unit nuclear power plants (NPPs) at a site has received considerable critical attention recently. However, current probabilistic safety assessment (PSA) procedures and computer code do not support multi-unit PSA because the traditional PSA structure is mostly used for the quantification of single-unit NPP risk. In this study, the main purpose is to develop a multi-unit Level 2 PSA method and apply it to full-power operating six-unit OPR1000. Multi-unit Level 2 PSA method consists of three steps: (1) development of single-unit Level 2 PSA; (2) extracting the mapping data from plant damage state to source term category; and (3) combining multi-unit Level 1 PSA results and mapping fractions. By applying developed multi-unit Level 2 PSA method into six-unit OPR1000, site containment failure probabilities in case of loss of ultimate heat sink, loss of off-site power, tsunami, and seismic event were quantified.

A Study on the Operational Events of Domestic Nuclear Power Plants for Multi-unit Risk (원전 다수기 리스크 평가를 위한 국내 원전 사건이력 조사 연구)

  • Lim, Hak Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.167-174
    • /
    • 2019
  • Compared to a single nuclear power plant (NPP) risk, the commonalities existing in the multiple NPPs attribute the characteristics of the multi-unit risk. If there is no commonality among the multiple NPPs, there will be no dependency among the risks of multiple NPPs. Therefore, understanding the commonality causing multi-unit events is essential to assessing the multi-unit risk, and identifying the characteristics of the multi-unit risk is necessary not only to select the scope and method for the multi-unit risk assessment, but also to analyze the data of the multi-unit events. In order to develop Korea-specific multi-unit risk assessment technology, we analyze the multi-unit commonalities included in the operational experiences of domestic NPPs. We identified 58 cases of multi-unit events through detailed review of domestic nuclear power plant event reports over the past 10 years, and the multi-unit events were classified into six commonalities to identify Korea-specific characteristics of multi-unit events. The identified characteristics can be used to understand and manage domestic multi-unit risks. It can also be used as a basis for modeling multi-unit events for multi-unit risk assessment.

Effective event recorder operation method for multi-coupled trainset (중련편성 열차를 위한 효율적인 사건기록기 운영방안)

  • Choi, Kwon-Hee;Jeong, Byung-Ho;Min, Pyung-Oh;Oh, Yong-Suk;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1428-1432
    • /
    • 2007
  • One of the most important targets of transportation is to transport human and commodities to the destination safely. Railway has low risk, compared with land, ocean and flight route and it assures high security as well as high speed driving, since it runs on regular track. However, train accident may result in tragic accident due to small carelessness, so special event recorder is preferably used in order for clarity of responsibility in case of accident, maintenance of signal device and defect analysis. JRU(Juridical Recorder Unit) for ATC/ATS/ATP can be more advanced event recorder. Event recorder of KTX-I which is running now is installed one by one on each leading car and last car, and operation plan of event recorder in case of single trainset is suggested. But regarding train operation of multi-coupled trainset operation such as KTX-II, more detailed study is required for event recorder revitalization and record data process method. Therefore, this research aims at operation plan used in existing event recorder, and suggests effective operation and management plan of event recorder in multi-coupled trainset such as new High Speed Train.

  • PDF

Methodology of seismic-response-correlation-coefficient calculation for seismic probabilistic safety assessment of multi-unit nuclear power plants

  • Eem, Seunghyun;Choi, In-Kil;Yang, Beomjoo;Kwag, Shinyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.967-973
    • /
    • 2021
  • In 2011, an earthquake and subsequent tsunami hit the Fukushima Daiichi Nuclear Power Plant, causing simultaneous accidents in several reactors. This accident shows us that if there are several reactors on site, the seismic risk to multiple units is important to consider, in addition to that to single units in isolation. When a seismic event occurs, a seismic-failure correlation exists between the nuclear power plant's structures, systems, and components (SSCs) due to their seismic-response and seismic-capacity correlations. Therefore, it is necessary to evaluate the multi-unit seismic risk by considering the SSCs' seismic-failure-correlation effect. In this study, a methodology is proposed to obtain the seismic-response-correlation coefficient between SSCs to calculate the risk to multi-unit facilities. This coefficient is calculated from a probabilistic multi-unit seismic-response analysis. The seismic-response and seismic-failure-correlation coefficients of the emergency diesel generators installed within the units are successfully derived via the proposed method. In addition, the distribution of the seismic-response-correlation coefficient was observed as a function of the distance between SSCs of various dynamic characteristics. It is demonstrated that the proposed methodology can reasonably derive the seismic-response-correlation coefficient between SSCs, which is the input data for multi-unit seismic probabilistic safety assessment.

A Study on the Event Processing for Electronic Control (전자제어의 Event 처리방법에 관한 연구)

  • 이종승;이중순;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.115-122
    • /
    • 1998
  • For digital engine control timings, such as ignition, are based on the crank shaft angle. Therefore, it is very important that the angle of the crank shaft can be detected with accuracy for optimal ignition timing. Sequential multi-point injection(MPI) systems that have independent injection events for each cylinder, are used to inject an accurate quantity of fuel, and to cope with varying engine status promptly. In this study the distributorless ignition timing. A crankshaft position sensor has been installed such that it generates a number of pulses per crankshaft revolution to permit accurate detection of the crank shaft angle. An event detecting algorithm has been developed, which detects the crank shaft pulses generated by the position sensor, and the software outputs the required control signals at given crank angle values. We clarified that the hardware method is the best way to increase the performance of the control system, because the event detecting duration T(1+2)max becomes zero.

  • PDF

A new methodology for modeling explicit seismic common cause failures for seismic multi-unit probabilistic safety assessment

  • Jung, Woo Sik;Hwang, Kevin;Park, Seong Kyu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2238-2249
    • /
    • 2020
  • In a seismic PSA, dependency among seismic failures of components has not been explicitly modeled in the fault tree or event tree. This dependency is separately identified and assigned with numbers that range from zero to unity that reflect the level of the mutual correlation among seismic failures. Because of complexity and difficulty in calculating combination probabilities of correlated seismic failures in complex seismic event tree and fault tree, there has been a great need of development to explicitly model seismic correlation in terms of seismic common cause failures (CCFs). If seismic correlations are converted into seismic CCFs, it is possible to calculate an accurate value of a top event probability or frequency of a complex seismic fault tree by using the same procedure as for internal, fire, and flooding PSA. This study first proposes a methodology to explicitly model seismic dependency by converting correlated seismic failures into seismic CCFs. As a result, this methodology will allow systems analysts to quantify seismic risk as what they have done with the CCF method in internal, fire, and flooding PSA.

Analysis of severe accident progression and Cs behavior for SBO event during mid-loop operation of OPR1000 using MELCOR

  • Park, Yerim;Shin, Hoyoung;Kim, Seungwoo;Jin, Youngho;Kim, Dong Ha;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2859-2865
    • /
    • 2021
  • One of the important issues raised from the Fukushima-Daiichi accident is the safety of multi-unit sites when simultaneous accidents occur at the site and recently a multi-unit PSA methodology is being developed worldwide. Since all operation modes of the plant should be considered in the multi-unit PSA, the accident analysis needs to be performed for shutdown operation modes, too. In this study, a station blackout during the mid-loop operation is selected as a reference scenario. The overall accident progression for the mid-loop operation is slower than that for the full-power operation because the residual heat per mass of coolant is about 6 times lower than that in the mid-loop scenario. Though the fractions of Cs released from the core to the RCS in both operation modes are almost the same, the amount of Cs delivered to the containment atmosphere is quite different due to the chemisorption in the RCS. While 45.5% of the initial inventory is chemisorbed on the RCS surfaces during the full-power operation, only 2.2% during the mid-loop operation. The containment remains intact during the mid-loop operation, though 83.9% of Cs is delivered to the containment.

Design of Context-Aware System Using Multi-Sensor for Semiconductor Equipment (멀티센서를 이용한 반도체 장비의 상황인지 시스템 설계)

  • Jeon, Min-Ho;Jeong, Seung-Heui;Kang, Chul-Gyu;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.547-549
    • /
    • 2010
  • In this paper, we propose context-aware system for semiconductor equipment that acquires information from multiple sensors in indoor environment. This proposed system acquires information from acceleration, pressure, temperature and gas sensors then the acquired information send to server. The data transmitted to server generates an alarm via context-aware algorithm of unit event and multi event. From that result, high-quality real-time monitoring is possible because of the reduced unnecessary alarms, and the efficient management is possible because the surrounding information is recognized at once.

  • PDF

Feasibility Study of Seismic Probabilistic Risk Assessment for Multi-unit NPP with Seismic Failure Correlation (다수기의 확률론적 지진안전성 평가를 위한 지진손상 상관계수의 적용)

  • Eem, Seunghyun;Kwag, Shinyoung;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.319-325
    • /
    • 2021
  • The 2011 East Japan Earthquake caused accidents at a number of nuclear power plants in Fukushima, highlighting the need for a study on the seismic safety of multiple NPP (Nuclear Power Plant) units. In the case of nuclear power plants built on a site that shows a similar seismic response, there is at least a correlation between the seismic damage of structures, systems, and components (SSCs) of nuclear power plants. In this study, a probabilistic seismic safety assessment was performed for the loss of essential power events of twin units. To derive an appropriate seismic damage correlation coefficient, a probabilistic seismic response analysis was performed. Using the external event mensuration system program, we analyzed the seismic fragility and seismic risk by composing a failure tree of multiple loss of essential power events. Additionally, a comparative analysis was performed considering the seismic damage correlation between SSCs as completely independent and completely dependent.