• Title/Summary/Keyword: multi-temporal method

Search Result 231, Processing Time 0.032 seconds

Constrained Multi-Area Dispatch Scheduling Algorithm with Regionally Distributed Optimal Power Flow Using Alternating Direction Method (ADM 기반 분산처리 최적조류계산을 이용한 다지역 제약급전계획 알고리즘)

  • Chung, Koo-Hyung;Kim, Bal-Ho;Lee, Jong-Joo;Kim, Hak-Man
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • This paper proposes a constrained multi-area dispatch scheduling algorithm applicable to interconnected power system operations. The dispatch scheduling formulated as an MIP problem can be efficiently computed by GBD algorithm. GBD guarantees adequate computation speed and solution convergence by reducing the dimension of the dispatch scheduling problem. In addition, the regional decomposition technique based on ADM is introduced to obtain efficient inter-temporal OPF solution. It can find the most economic dispatch schedule incorporating power transactions without each regional utility's private information open.

Temporal Prediction of Ice Accretion Using Reduced-order Modeling (차원축소모델을 활용한 시간에 따른 착빙 형상 예측 연구)

  • Kang, Yu-Eop;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.147-155
    • /
    • 2022
  • The accumulated ice and snow during the operation of aircraft and railway vehicles can degrade aerodynamic performance or damage the major components of vehicles. Therefore, it is crucial to predict the temporal growth of ice for operational safety. Numerical simulation of ice is widely used owing to the fact that it is economically cheaper and free from similarity problems compared to experimental methods. However, numerical simulation of ice generally divides the analysis into multi-step and assumes the quasi-steady assumption that considers every time step as steady state. Although this method enables efficient analysis, it has a disadvantage in that it cannot track continuous ice evolution. The purpose of this study is to construct a surrogate model that can predict the temporal evolution of ice shape using reduced-order modeling. Reduced-order modeling technique was validated for various ice shape generated under 100 different icing conditions, and the effect of the number of training data and the icing conditions on the prediction error of model was analyzed.

Protection of Location Privacy for Spatio-Temporal Query Processing Using R-Trees (R-트리를 활용한 시공간 질의 처리의 위치 개인정보 보호 기법)

  • Kwon, Dong-Seop
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.3
    • /
    • pp.85-98
    • /
    • 2010
  • The prevailing infrastructure of ubiquitous computing paradigm on the one hand making significant development for integrating technology in the daily life but on the other hand raising concerns for privacy and confidentiality. This research presents a new privacy-preserving spatio-temporal query processing technique, in which location based services (LBS) can be serviced without revealing specific locations of private users. Existing location cloaking techniques are based on a grid-based structures such as a Quad-tree and a multi-layered grid. Grid-based approaches can suffer a deterioration of the quality in query results since they are based on pre-defined size of grids which cannot be adapted for variations of data distributions. Instead of using a grid, we propose a location-cloaking algorithm which uses the R-tree, a widely adopted spatio-temporal index structure. The proposed algorithm uses the MBRs of leaf nodes as the cloaked locations of users, since each leaf node guarantees having not less than a certain number of objects. Experimental results show the superiority of the proposed method.

Cost-Aware Scheduling of Computation-Intensive Tasks on Multi-Core Server

  • Ding, Youwei;Liu, Liang;Hu, Kongfa;Dai, Caiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5465-5480
    • /
    • 2018
  • Energy-efficient task scheduling on multi-core server is a fundamental issue in green cloud computing. Multi-core processors are widely used in mobile devices, personal computers, and servers. Existing energy efficient task scheduling methods chiefly focus on reducing the energy consumption of the processor itself, and assume that the cores of the processor are controlled independently. However, the cores of some processors in the market are divided into several voltage islands, in each of which the cores must operate on the same status, and the cost of the server includes not only energy cost of the processor but also the energy of other components of the server and the cost of user waiting time. In this paper, we propose a cost-aware scheduling algorithm ICAS for computation intensive tasks on multi-core server. Tasks are first allocated to cores, and optimal frequency of each core is computed, and the frequency of each voltage island is finally determined. The experiments' results show the cost of ICAS is much lower than the existing method.

Multi-channel EEG classification method according to music tempo stimuli using 3D convolutional bidirectional gated recurrent neural network (3차원 합성곱 양방향 게이트 순환 신경망을 이용한 음악 템포 자극에 따른 다채널 뇌파 분류 방식)

  • Kim, Min-Soo;Lee, Gi Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.228-233
    • /
    • 2021
  • In this paper, we propose a method to extract and classify features of multi-channel ElectroEncephalo Graphy (EEG) that change according to various musical tempo stimuli. In the proposed method, a 3D convolutional bidirectional gated recurrent neural network extracts spatio-temporal and long time-dependent features from the 3D EEG input representation transformed through the preprocessing. The experimental results show that the proposed tempo stimuli classification method is superior to the existing method and the possibility of constructing a music-based brain-computer interface.

Initial Second Harmonic Generation in Narrowband Surface Waves by Multi-Line Laser Beams for Two Kinds of Spatial Energy Profile Models: Gaussian and Square-Like

  • Choi, Sungho;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.257-263
    • /
    • 2013
  • Acoustic nonlinearity of surface waves is an effective method to evaluate the micro damage on the surface of materials. In this method, the $A_1$ (magnitude of the fundamental wave) and $A_2$ (magnitude of the second-order harmonic wave) are measured for evaluation of acoustic nonlinearity. However, if there is another source of second-order harmonic wave other than the material itself, the linear relationship between $A_1{^2}$ and $A_2$ will not be guaranteed. Therefore, the second-order harmonic generation by another source should be fully suppressed. In this paper, we investigated the initial second-order harmonic generation in narrowband surface waves by multi-line laser beams. The spatial profile of laser beam was considered in the cases of Gaussian and square-like. The temporal profile was assumed to be Gaussian. In case of Gaussian spatial profile, the generation of the initial second-order harmonic wave was inevitable. However, when the spatial profile was square-like, the generation of the initial second-order harmonic wave was able to be fully suppressed at specific duty ratio. These results mean that the multi-line laser beams of square-like profile with a proper duty ratio are useful to evaluate the acoustic nonlinearity of the generated surface waves.

A Study on the Urban Growth Change using Satellite Imagery Data (위성영상자료를 활용한 도시성장변화에 관한 연구)

  • Kim, Yoon-Soo;Kim, Jung-Hwan;Jung, Eung-Ho;Ryu, Ji-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.81-90
    • /
    • 2002
  • Remote Sensing has been very useful tool in monitoring of cities and updating of GIS database compare to traditional methods due to its benefit; wide range covering on low cost and advanced data collection. However it had come to a limited method in limited researches because of its relatively poor spatial resolution in scanning. Recently launched satellites are able to produce improved imageries, and new commercial services have been commenced for the use of general public with higher spatial resolution up to $1m{\times}1m$. This study tackled a potential use of these improved satellite imageries in urban planning based on the Multi-temporal satellite imagery with particular reference to monitoring on urban areas, for example urbanization and its expanding. i) Portion of individual features and elements in each pixel of satellite imagery was computed based on 'Endmember' of targeted elements. ii) Urbanized areas were categorized based on the 'Fraction imagery' derived from the 'SMA algorithm'. iii) Alterations and expanding of urban areas were identified based on the Multi-temporal satellite imageries. Tested method showed a strong potential to produce more advanced monitoring skills of urban areas.

  • PDF

Analysis of Shadow Effect on High Resolution Satellite Image Matching in Urban Area (도심지역의 고해상도 위성영상 정합에 대한 그림자 영향 분석)

  • Yeom, Jun Ho;Han, You Kyung;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Multi-temporal high resolution satellite images are essential data for efficient city analysis and monitoring. Yet even when acquired from the same location, identical sensors as well as different sensors, these multi-temporal images have a geometric inconsistency. Matching points between images, therefore, must be extracted to match the images. With images of an urban area, however, it is difficult to extract matching points accurately because buildings, trees, bridges, and other artificial objects cause shadows over a wide area, which have different intensities and directions in multi-temporal images. In this study, we analyze a shadow effect on image matching of high resolution satellite images in urban area using Scale-Invariant Feature Transform(SIFT), the representative matching points extraction method, and automatic shadow extraction method. The shadow segments are extracted using spatial and spectral attributes derived from the image segmentation. Also, we consider information of shadow adjacency with the building edge buffer. SIFT matching points extracted from shadow segments are eliminated from matching point pairs and then image matching is performed. Finally, we evaluate the quality of matching points and image matching results, visually and quantitatively, for the analysis of shadow effect on image matching of high resolution satellite image.

A Study on Object Based Image Analysis Methods for Land Use and Land Cover Classification in Agricultural Areas (변화지역 탐지를 위한 시계열 KOMPSAT-2 다중분광 영상의 MAD 기반 상대복사 보정에 관한 연구)

  • Yeon, Jong-Min;Kim, Hyun-Ok;Yoon, Bo-Yeol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.66-80
    • /
    • 2012
  • It is necessary to normalize spectral image values derived from multi-temporal satellite data to a common scale in order to apply remote sensing methods for change detection, disaster mapping, crop monitoring and etc. There are two main approaches: absolute radiometric normalization and relative radiometric normalization. This study focuses on the multi-temporal satellite image processing by the use of relative radiometric normalization. Three scenes of KOMPSAT-2 imagery were processed using the Multivariate Alteration Detection(MAD) method, which has a particular advantage of selecting PIFs(Pseudo Invariant Features) automatically by canonical correlation analysis. The scenes were then applied to detect disaster areas over Sendai, Japan, which was hit by a tsunami on 11 March 2011. The case study showed that the automatic extraction of changed areas after the tsunami using relatively normalized satellite data via the MAD method was done within a high accuracy level. In addition, the relative normalization of multi-temporal satellite imagery produced better results to rapidly map disaster-affected areas with an increased confidence level.

Multi-view Video Codec for 3DTV (3DTV를 위한 다시점 동영상 부호화 기법)

  • Bae Jin-Woo;Song Hyok;Yoo Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.337-344
    • /
    • 2006
  • In this paper, we propose a multi-view video codec for 3DTV system. The proposed algorithm is not only to reduce the temporal and spatial redundancy but also to reduce the redundancy among each view. With these results, we can improve the coding efficiency for multi-view video sequences. In order to reduce the redundancy of each view more efficiently, we define the assembled image(AI) that is generated by the global disparity compensation of each view. In addition, the proposed algorithm is based on MPEG-2 structure so that we can easily implement 3DTV system without changing the conventional 2D digital TV system. Experimental results show that the proposed algorithm performs very well. It also performs better than MPEG-2 simulcast coding method. The newly proposed codec also supports the view scalability, accurate temporal synchronization among multiple views and random access capability in view dimension.