• 제목/요약/키워드: multi-stage decision making

검색결과 47건 처리시간 0.025초

Multi-Valued Decision Making for Transitional Stochastic Event: Determination of Sleep Stages Through EEG Record

  • Nakamura, Masatoshi;Sugi, Takenao
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권3호
    • /
    • pp.239-243
    • /
    • 2002
  • Multi-valued decision making for transitional stochastic events was newly derived based on conditional probability of knowledge database which included experts'knowledge and experience. The proposed multi-valued decision making was successfully adopted to the determination of the five levels of the vigilance of a subject during the EEG (electroencephalogram) recording; awake stage (stage W), and sleep stages (stage REM (rapid eye movement), stage 1, stage 2, stage $\sfrac{3}{4}$). Innovative feature of the proposed method is that the algorithm of decision making can be constructed only by use of the knowledge database, inspected by experts. The proposed multi-valued decision making with a mathematical background of the probability can also be applicable widely, in industries and in other medical fields for purposes of the multi-valued decision making.

Multi-Valued Decision Making for Transitional Stochastic Event: Determination of Sleep Stages through EEG Record

  • Nakamura, Masatoshi;Sugi, Takenaop;Morota, Yukinao;Tachibana, Naoko;Shibasaki, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.493-493
    • /
    • 2000
  • Multi-valued decision making for transitional stochastic events was newly derived based on conditional probability of database. The two values (on-off) decision making method without transition had been proposed by one of the author in a previous work for a purpose of realizing human on-off decision making. The current method is an extension of the previous on-off decision making. By combining the conditional probability and the transitional probability, the closed form of the algorithm for the multi-valued transitional decision making was derived. The proposed multi-valued decision making was successfully applied to the determination of the five levels of the vigilance of a subject during the EEG recording; awake stage, drowsy stage and sleeping stages (stage 1, stage 2/3, REM (rapid eye movement)). The method for determining the vigilance level can be directly usable for the two purposes; selection of awake EEG segments for automatic EEG interpretation, and determination of sleep stages through sleep EEG. The proposed multi-valued decision making with a mathematical background of the probability can be applicable widely, in industries and in medical fields for purposes of the multi-valued decision making.

  • PDF

Uncertain Centralized/Decentralized Production-Distribution Planning Problem in Multi-Product Supply Chains: Fuzzy Mathematical Optimization Approaches

  • Khalili-Damghani, Kaveh;Ghasemi, Peiman
    • Industrial Engineering and Management Systems
    • /
    • 제15권2호
    • /
    • pp.156-172
    • /
    • 2016
  • Complex and uncertain issues in supply chain result in integrated decision making processes in supply chains. So decentralized (distributed) decision making (DDM) approach is considered as a crucial stage in supply chain planning. In this paper, an uncertain DDM through coordination mechanism is addressed for a multi-product supply chain planning problem. The main concern of this study is comparison of DDM approach with centralized decision making (CDM) approach while some parameters of decision making are assumed to be uncertain. The uncertain DDM problem is modeled through fuzzy mathematical programming in which products' demands are assumed to be uncertain and modeled using fuzzy sets. Moreover, a CDM approach is customized and developed in presence of fuzzy parameters. Both approaches are solved using three fuzzy mathematical optimization methods. Hence, the contribution of this paper can be summarized as follows: 1) proposing a DDM approach for a multi-product supply chain planning problem; 2) Introducing a coordination mechanism in the proposed DDM approach in order to utilize the benefits of a CDM approach while using DDM approach; 3) Modeling the aforementioned problem through fuzzy mathematical programming; 4) Comparing the performance of proposed DDM and a customized uncertain CDM approach on multi-product supply chain planning; 5) Applying three fuzzy mathematical optimization methods in order to address and compare the performance of both DDM and CDM approaches. The results of these fuzzy optimization methods are compared. Computational results illustrate that the proposed DDM approach closely approximates the optimal solutions generated by the CDM approach while the manufacturer's and retailers' decisions are optimized through a coordination mechanism making lasting relationship.

A Multi-stage Multi-criteria Transshipment Model for Optimal Selection of Transshipment Nodes - Case of Train Ferry-

  • Kim, Dong-Jin;Kim, Sang-Youl
    • 한국항해항만학회지
    • /
    • 제33권4호
    • /
    • pp.271-275
    • /
    • 2009
  • A strategic decision making on location selection for product transportation includes many tangible and untangible factors. To choose the best locations is a difficult job in the sense that objectives usually conflict with each other. In this paper, we consider a multi stage multi criteria transshipment problem with different types of items to be transported from the sources to the destination points. For the optimization of the problem, a goal programming formulation will be presented in which the location selection for each product type will be determined under the multi objective criteria. In the study, we generalize the transshipment model with a variety of product types and finite number of different intermediate nodes between origins and destinations. For the selection of the criteria we selected the costs(fixed cost and transportation cost), location numbers, and unsatisfied demand for each type of products in multi stage transportation, which are the main goals in transshipment modelling problems. The related conditions are also modelled through linear formats.

퍼지추론 기반 멀티 에이전트를 통한 리모델링 사업 전 추진단계에서의 갈등관리 (Conflict Management in Planning phase of Remodeling Project through Multi-Agent based on Fuzzy Inference.)

  • 박지은;유정호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.202-203
    • /
    • 2015
  • To promote the remodeling project it is important to get apartment residents' consent. It is significant variable to determine project to progress smoothly from planning stage which committee of association establishment sets up to establishment stage of association. On average, it takes about 1~1.6 year in planning phase which means before construction phase of remodeling. Therefore, it is very important issue to get apartment residents' consent in planning phase. In this research, we focused on residents' opinion and proposed solution of conflict with gathering residents' opinion to proceed remodeling project. By setting particular remodeling situation, related residents represented as agents made effort to efficient coordination to reduce total duration of decision making. Therefore, we proposed multi-agent based on fuzzy inference to simulate behavior of decision making on remodeling project effectively. From this method, optimal alternative is selected by considering each agents' attributes which represented by fuzzy set. This research will develope to further research for realizing concrete multi-agent based on fuzzy inference considering all stakeholders in remodeling project.

  • PDF

Applying Innovative Model and Optimize Business Management for Product Market

  • liao, Shih-chung
    • 유통과학연구
    • /
    • 제11권3호
    • /
    • pp.13-22
    • /
    • 2013
  • Purpose - Product purpose for optimal values solution for synthesize evaluative criteria and optimize product design values. In addition, product designer has to consider the product design to conform to project, laws and regulations, authentication, from the product design stage. Research design, data, methodology - How to use an evaluative criteria model's imprecise market data by evaluative criteria research design; product mapping relationships between design parameters and customer requirements using product predicted value method. An evaluative criteria model and their associated criteria status, product evaluative criteria model of results. Results - Therefore, after the enterprise product design project analysis, effectiveness and the customer degree of satisfaction must be appraised to obtain the maximum value for the benefit on behalf of the implementation goals, the promotion product level and market competition strength. Conclusions - In multi criterion decision making (MCDM), using its searching software capacity to obtain the optimal solution.

  • PDF

시뮬레이션 최적화 방법을 이용한 다단계 공급망 재고 관리 (Multi-Stage Supply Chain Inventory Control Using Simulation Optimization)

  • 유장선;김신태;홍성록;김창욱
    • 산업공학
    • /
    • 제21권4호
    • /
    • pp.444-455
    • /
    • 2008
  • In the present manufacturing environment, the appropriate decision making strategy has a significance and it should count on the fast-changing demand of customers. This research derives the optimal levels of the decision variables affecting the inventory related performance in multi-stage supply chain by using simulation and genetic algorithm. Simulation model helps analyze the customer service level of the supply chain computationally and the genetic algorithm searches the optimal solutions by interaction with the simulation model. Our experiments show that the integration approach of the genetic algorithm with a simulation model is effective in finding the solutions that achieve predefined target service levels.

Optimal Network Defense Strategy Selection Based on Markov Bayesian Game

  • Wang, Zengguang;Lu, Yu;Li, Xi;Nie, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5631-5652
    • /
    • 2019
  • The existing defense strategy selection methods based on game theory basically select the optimal defense strategy in the form of mixed strategy. However, it is hard for network managers to understand and implement the defense strategy in this way. To address this problem, we constructed the incomplete information stochastic game model for the dynamic analysis to predict multi-stage attack-defense process by combining Bayesian game theory and the Markov decision-making method. In addition, the payoffs are quantified from the impact value of attack-defense actions. Based on previous statements, we designed an optimal defense strategy selection method. The optimal defense strategy is selected, which regards defense effectiveness as the criterion. The proposed method is feasibly verified via a representative experiment. Compared to the classical strategy selection methods based on the game theory, the proposed method can select the optimal strategy of the multi-stage attack-defense process in the form of pure strategy, which has been proved more operable than the compared ones.

Data-Driven Approaches for Evaluating Countries in the International Construction Market

  • Lee, Kang-Wook;Han, Seung H.
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.496-500
    • /
    • 2015
  • International construction projects are inherently more risky than domestic projects with multi-dimensional uncertainties that require complementary risk management at both the country and project levels. However, despite a growing need for systematic country evaluations, most studies have focused on project-level decisions and lack country-based approaches for firms in the construction industry. Accordingly, this study suggests data-driven approaches for evaluating countries using two quantitative models. The first is a two-stage country segmentation model that not only screens negative countries based on country attractiveness (macro-segmentation) but also identifies promising countries based on the level of past project performance in a given country (micro-segmentation). The second is a multi-criteria country segmentation model that combines a firm's business objective with the country evaluation process based on Kraljic's matrix and fuzzy preference relations (FPR). These models utilize not only secondary data from internationally reputable institutions but also performance data on Korean firms from 1990 to 2014 to evaluate 29 countries. The proposed approaches enable firms to enhance their decision-making capacity for evaluating and selecting countries at the early stage of corporate strategy development.

  • PDF

Dominance, Potential Optimality, and Strict Preference Information in Multiple Criteria Decision Making

  • Park, Kyung-Sam;Shin, Dong-Eun
    • Management Science and Financial Engineering
    • /
    • 제17권2호
    • /
    • pp.63-84
    • /
    • 2011
  • The ordinary multiple criteria decision making (MCDM) approach requires two types of input, alternative values and criterion weights, and employs two schemes of alternative prioritization, dominance and potential optimality. This paper allows for incomplete information on both types of input and gives rise to the dominance relationships and potential optimality of alternatives. Unlike the earlier studies, we emphasize that incomplete information frequently takes the form of strict inequalities, such as strict orders and strict bounds, rather than weak inequalities. Then the issues of rising importance include: (1) The standard mathematical programming approach to prioritize alternatives cannot be used directly, because the feasible region for the permissible decision parameters becomes an open set. (2) We show that the earlier methods replacing the strict inequalities with weak ones, by employing a small positive number or zeroes, which closes the feasible set, may cause a serious problem and yield unacceptable prioritization results. Therefore, we address these important issues and develop a useful and simple method, without selecting any small value for the strict preference information. Given strict information on both types of decision parameters, we first construct a nonlinear program, transform it into a linear programming equivalent, and finally solve it via a two-stage method. An application is also demonstrated herein.