• Title/Summary/Keyword: multi-spectrum

Search Result 653, Processing Time 0.026 seconds

AJ Performance of the FH-CSS(Frequency Hopped - Chirp Spread Spectrum) Communication Systems (NED를 사용하는 FH-CSS(Frequency Hopped - Chirp Spread Spectrum)의 항 재밍 성능 분석)

  • Kim, Sung-Ho;Kim, Young-Jae;Hwang, Seok-Gu;Jo, Byoung-Gak;Shin, Kwan-Ho;Kim, Nam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.69-73
    • /
    • 2011
  • In the defence wireless communications, conventional Anti-Jamming techniques(Frequency Hopping/Spread Spectrum or Direct Sequence/Spread Spectrum) are used to overcome a intentional interfering signals which are single/multitone or partial band jammer etc. DS/SS techniques is very strong on tone jamming signal but not to be on a partial band jammer. So FH/SS AJ performances are expected method of an substitution of DS/SS, however FH/SS could not have good performance on some BMTJ(Band Multi-tone Jammer). So this paper proposes FH-CSS (Frequency Hopped - Chirp Spread Spectrum) to get more robustness against jammers(BMTJ, PBNJ) and analyze the AJ performances.

Behavior of Regular Waves and Multi-Directional Random Waves Passing a Breakwater (방파제를 통과하는 규칙파와 다방향 불규칙파랑의 거동)

  • Park, Sang-Il;Park, Jin-Ho;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.439-442
    • /
    • 2008
  • Diffraction of multi-directional random waves passing semi-infinite breakwater is investigated by using analytic solution derived by Penny and Prices(1952). An irregylarity of period and incident angle of waves and regular periods for regular waves are considered in addition by expanding from the past study which used only monochromatic wave in general. The Bretschneider-Mitsuyasu frequency spectrum and Mitsuyasu directional spectrum are used for incident waves. And diffraction of multi-directional random waves is reappeared by decomposing numerical results of several monochromatic waves which have variable period and incident angle. Analytic solution on the diffraction of regular waves and multi-directional random waves calculated in this study.

  • PDF

System Throughput of Cognitive Radio Multi-hop Relay Networks (무선인지 멀티홉 릴레이 네트워크의 시스템 스루풋)

  • Hassan, I.;Rho, Chang-Bae;Song, Ju-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.29-39
    • /
    • 2009
  • The need for radio spectrum is recently considered as a huge hurdle towards the rapid development of wireless networks. Large parts of the spectrum are allocated to licensed radio services in proprietary way. However, enormous success of the wireless services and technologies in the unlicensed bands has brought new ideas and innovations. In recent years cognitive radio has gained much attention for solving the spectrum scarcity problem. It changes the way spectrum is regulated so that more efficient spectrum utilization is possible. Multi-hop relay technology on the other hand has intensively been studied in the area of ad hoc and peer-to-peer networks. But in cellular network, only recently the integration of multi-hop capability is considered to enhance the performance significantly. Multi-hop relaying can extend the coverage of the cell to provide high data rate service to a greater distance and in the shadowed regions. Very few papers still exist that combine these methods to maximize the spectrum utilization. Thus we propose a network architecture combining these two technologies in a way to maximize the system throughput. We present the throughput capacity equations for the proposed system model considering various system parameters like utilization factor by the primary users and primary users' transmission radius and through extensive numerical simulations we analyze the significance of work.

Energy Efficient Sequential Sensing in Multi-User Cognitive Ad Hoc Networks: A Consideration of an ADC Device

  • Gan, Xiaoying;Xu, Miao;Li, He
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.188-194
    • /
    • 2012
  • Cognitive networks (CNs) are capable of enabling dynamic spectrum allocation, and thus constitute a promising technology for future wireless communication. Whereas, the implementation of CN will lead to the requirement of an increased energy-arrival rate, which is a significant parameter in energy harvesting design of a cognitive user (CU) device. A well-designed spectrum-sensing scheme will lower the energy-arrival rate that is required and enable CNs to self-sustain, which will also help alleviate global warming. In this paper, spectrum sensing in a multi-user cognitive ad hoc network with a wide-band spectrum is considered. Based on the prospective spectrum sensing, we classify CN operation into two modes: Distributed and centralized. In a distributed network, each CU conducts spectrum sensing for its own data transmission, while in a centralized network, there is only one cognitive cluster header which performs spectrum sensing and broadcasts its sensing results to other CUs. Thus, a wide-band spectrum that is divided into multiple sub-channels can be sensed simultaneously in a distributed manner or sequentially in a centralized manner. We consider the energy consumption for spectrum sensing only of an analog-to-digital convertor (ADC). By formulating energy consumption for spectrum sensing in terms of the sub-channel sampling rate and whole-band sensing time, the sampling rate and whole-band sensing time that are optimal for minimizing the total energy consumption within sensing reliability constraints are obtained. A power dissipation model of an ADC, which plays an important role in formulating the energy efficiency problem, is presented. Using AD9051 as an ADC example, our numerical results show that the optimal sensing parameters will achieve a reduction in the energy-arrival rate of up to 97.7% and 50% in a distributed and a centralized network, respectively, when comparing the optimal and worst-case energy consumption for given system settings.

Spectrum- and Energy- Efficiency Analysis Under Sensing Delay Constraint for Cognitive Unmanned Aerial Vehicle Networks

  • Zhang, Jia;Wu, Jun;Chen, Zehao;Chen, Ze;Gan, Jipeng;He, Jiangtao;Wang, Bangyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1392-1413
    • /
    • 2022
  • In order to meet the rapid development of the unmanned aerial vehicle (UAV) communication needs, cooperative spectrum sensing (CSS) helps to identify unused spectrum for the primary users (PU). However, multi-UAV mode (MUM) requires the large communication resource in a cognitive UAV network, resulting in a severe decline of spectrum efficiency (SE) and energy efficiency (EE) and increase of energy consumption (EC). On this account, we extend the traditional 2D spectrum space to 3D spectrum space for the UAV network scenario and enable UAVs to proceed with spectrum sensing behaviors in this paper, and propose a novel multi-slot mode (MSM), in which the sensing slot is divided into multiple mini-slots within a UAV. Then, the CSS process is developed into a composite hypothesis testing problem. Furthermore, to improve SE and EE and reduce EC, we use the sequential detection to make a global decision about the PU channel status. Based on this, we also consider a truncation scenario of the sequential detection under the sensing delay constraint, and further derive a closed-form performance expression, in terms of the CSS performance and cooperative efficiency. At last, the simulation results verify that the performance and cooperative efficiency of MSM outperforms that of the traditional MUM in a low EC.

Quantum Bacterial Foraging Optimization for Cognitive Radio Spectrum Allocation

  • Li, Fei;Wu, Jiulong;Ge, Wenxue;Ji, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.564-582
    • /
    • 2015
  • This paper proposes a novel swarm intelligence optimization method which integrates bacterial foraging optimization (BFO) with quantum computing, called quantum bacterial foraging optimization (QBFO) algorithm. In QBFO, a multi-qubit which can represent a linear superposition of states in search space probabilistically is used to represent a bacterium, so that the quantum bacteria representation has a better characteristic of population diversity. A quantum rotation gate is designed to simulate the chemotactic step for the sake of driving the bacteria toward better solutions. Several tests are conducted based on benchmark functions including multi-peak function to evaluate optimization performance of the proposed algorithm. Numerical results show that the proposed QBFO has more powerful properties in terms of convergence rate, stability and the ability of searching for the global optimal solution than the original BFO and quantum genetic algorithm. Furthermore, we examine the employment of our proposed QBFO for cognitive radio spectrum allocation. The results indicate that the proposed QBFO based spectrum allocation scheme achieves high efficiency of spectrum usage and improves the transmission performance of secondary users, as compared to color sensitive graph coloring algorithm and quantum genetic algorithm.

Gamma spectrum denoising method based on improved wavelet threshold

  • Xie, Bo;Xiong, Zhangqiang;Wang, Zhijian;Zhang, Lijiao;Zhang, Dazhou;Li, Fusheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1771-1776
    • /
    • 2020
  • Adverse effects in the measured gamma spectrum caused by radioactive statistical fluctuations, gamma ray scattering, and electronic noise can be reduced by energy spectrum denoising. Wavelet threshold denoising can be used to perform multi-scale and multi-resolution analysis on noisy signals with small root mean square errors and high signal-to-noise ratios. However, in traditional wavelet threshold denoising methods, there are signal oscillations in hard threshold denoising and constant deviations in soft threshold denoising. An improved wavelet threshold calculation method and threshold processing function are proposed in this paper. The improved threshold calculation method takes into account the influence of the number of wavelet decomposition layers and reduces the deviation caused by the inaccuracy of the threshold. The improved threshold processing function can be continuously guided, which solves the discontinuity of the traditional hard threshold function, avoids the constant deviation caused by the traditional soft threshold method. The examples show that the proposed method can accurately denoise and preserves the characteristic signals well in the gamma energy spectrum.

A Study on Vibration Transfer Path Identification of Vehicle Driver's Position by Multi-dimensional Spectral Analysis (다차원 스펙트럼 해석법을 이용한 차실내 운전자석 진동전달경로 규명에 관한 연구)

  • Lee, You-Yub;Park, Sang-Gil;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.741-746
    • /
    • 2007
  • In this study, transfer path identification and output estimation are simulated by multi-dimension spectral analysis method (MDSA). Multi -input/single-output system give expression the vehicle suspension which each inputs are correlated reciprocally. In case of correlating with inputs, the system needs separating the each input signal by MDSA. Main simulations are about finding effective input by coherent output spectrum and selecting optimal input's number by multiple coherence function. Also, by shielding transfer path of each input, transfer path characteristic is identified in terms of overall integrated contribution level.

A Study on the Multi-Channel Microphone (다채널 마이크로폰 음향장치에 관한 연구)

  • Kim, Cheol-Woon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.96-102
    • /
    • 2003
  • Today, stage technology is developing highly by application of digital computer. Performance is composed of audio/video and acoustic technology takes very important position in field of stage technology. Generally speaking, four factors of sound are loudness, pitch, sound timbre and duration. Loudness depends on sound pressure level, yet partly related with spectrum and dulation. Pitch depends mainly on frequence and have a relation with sound pressure and duration. sound timbre depends strongly on spectrum and have a relation with frequence. In this paper, I designed a multi-microphone system which can used in broadcasting and performance stage with vicboss 200MHz-VHF wireless microphone and vicboss 900MHz-VHF wireless microphone. I also studied about multi-microphone which can use conveniently in the super play that needs many microphones. If this multi-microphone is prodused, we could expect better sound quality and a big progress in stereo recording technology.

  • PDF

Progressive Linear Precoder Design for Multiple Codewords MIMO ARQ Systems with ARQ Bundling Feedback

  • Zhang, Zhengyu;Qiu, Ling
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.199-205
    • /
    • 2012
  • This work investigates the progressive linear precoder design for packet retransmissions in multi-input multi-output (MIMO) systems with multiple codewords and automatic repeat request (ARQ) bundling feedback. Assuming perfect channel state information, a novel progressive linear ARQ precoder is proposed in the perspective of minimizing the packet error rate. We devise the ARQ precoder by combining power loading and sub channel pairing between current retransmission and previous transmissions. Furthermore, we extend the design to the case that the channel estimation error exists. Numerical results show that the proposed scheme can improve the performance of MIMO ARQ systems significantly regardless of the channel estimation error.