• Title/Summary/Keyword: multi-sensors

Search Result 993, Processing Time 0.027 seconds

Performance Evaluation of Pansharpening Algorithms for WorldView-3 Satellite Imagery

  • Kim, Gu Hyeok;Park, Nyung Hee;Choi, Seok Keun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.413-423
    • /
    • 2016
  • Worldview-3 satellite sensor provides panchromatic image with high-spatial resolution and 8-band multispectral images. Therefore, an image-sharpening technique, which sharpens the spatial resolution of multispectral images by using high-spatial resolution panchromatic images, is essential for various applications of Worldview-3 images based on image interpretation and processing. The existing pansharpening algorithms tend to tradeoff between spectral distortion and spatial enhancement. In this study, we applied six pansharpening algorithms to Worldview-3 satellite imagery and assessed the quality of pansharpened images qualitatively and quantitatively. We also analyzed the effects of time lag for each multispectral band during the pansharpening process. Quantitative assessment of pansharpened images was performed by comparing ERGAS (Erreur Relative Globale Adimensionnelle de Synthèse), SAM (Spectral Angle Mapper), Q-index and sCC (spatial Correlation Coefficient) based on real data set. In experiment, quantitative results obtained by MRA (Multi-Resolution Analysis)-based algorithm were better than those by the CS (Component Substitution)-based algorithm. Nevertheless, qualitative quality of spectral information was similar to each other. In addition, images obtained by the CS-based algorithm and by division of two multispectral sensors were shaper in terms of spatial quality than those obtained by the other pansharpening algorithm. Therefore, there is a need to determine a pansharpening method for Worldview-3 images for application to remote sensing data, such as spectral and spatial information-based applications.

Investigation of Urban Environmental Quality Using an Integration of Satellite, Ground based measurement data over Seoul, Korea

  • Lee, Kwon-Ho;Wong, Man-Sing;Kim, Young-J.
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.339-351
    • /
    • 2011
  • This study investigates the potentials of satellite, ground measurement data, and geo-spatial information within an urban area for the mapping of the Urban Environmental Quality (UEQ) parameters. The UEQ indicates a complex and various parameters resulting from both human and natural factors, which are greenness, climate, air pollution, the urban infrastructure, and etc. Multi-spectral remote sensing data from the Landsat ETM and TM sensors for the mapping of air pollution by the Haze Optimized Transform (HOT) technique, Urban Heat Island (UHO using the emissivity-fusion method in Seoul from 2000 to 2006 in fine resolution (30m) were analyzed for the estimation of UEQ index. Although the UHI values are similar ($8.4^{\circ}C{\sim}9.1^{\circ}C$) during these years, the spatial coverage of "hot" surface temperature (> $24^{\circ}C$) significantly increased from 2000 to 2006 due to the rapid urban development. Furthermore, high correlations between vegetation index and land surface temperature were achieved with a correlation coefficients of 0.85 (2000), 0.81 (2001), 0.84 (2002), and 0.89 (2006), respectively. It was found that the proposed method was successfully analyzed spatial structure of the UEQ and the scenarios of the best and worst areas within the city were also identified. Based on the quantifiable fine resolution satellite image parameters, UEQ can promote the understanding of the complex and dynamic factors controlling urban environment.

Fabrication and Characteristics of MMIC Substrate using Oxidation of Porous Silicon (다공질 실리콘 산화법을 이용한 MMIC 기판의 제조 및 그 특성)

  • Kwon, O.J.;Kim, K.J.;Lee, J.S.;Lee, J.H.;Choi, H.C.;Lee, J.H.;Kim, K.W.
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.202-209
    • /
    • 1999
  • Microstrip line was fabricated on the oxidized porous silicon layer which has nearly electrically and chemically identical properties with thermally oxidized silicon layer. Thick oxidized porous silicon layer of few tenth of micrometers was prepared by thermal oxidation of porous silicon layer on silicon substrate. Multi-step thermal oxidation process was used to obtain high Quality and thick oxidized silicon layer and to release thermal stress. Microstrip line was fabricated on the oxidized porous silicon layer. Its microwave characteristics were measured and the availability for MMIC substrate was investigated.

  • PDF

Model-based and wavelet-based fault detection and diagnosis for biomedical and manufacturing applications: Leading Towards Better Quality of Life

  • Kao, Imin;Li, Xiaolin;Tsai, Chia-Hung Dylan
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.153-171
    • /
    • 2009
  • In this paper, the analytical fault detection and diagnosis (FDD) is presented using model-based and signal-based methodology with wavelet analysis on signals obtained from sensors and sensor networks. In the model-based FDD, we present the modeling of contact interface found in soft materials, including the biomedical contacts. Fingerprint analysis and signal-based FDD are also presented with an experimental framework consisting of a mechanical pneumatic system typically found in manufacturing automation. This diagnosis system focuses on the signal-based approach which employs multi-resolution wavelet decomposition of various sensor signals such as pressure, flow rate, etc., to determine leak configuration. Pattern recognition technique and analytical vectorized maps are developed to diagnose an unknown leakage based on the established FDD information using the affine mapping. Experimental studies and analysis are presented to illustrate the FDD methodology. Both model-based and wavelet-based FDD applied in contact interface and manufacturing automation have implication towards better quality of life by applying theory and practice to understand how effective diagnosis can be made using intelligent FDD. As an illustration, a model-based contact surface technology an benefit the diabetes with the detection of abnormal contact patterns that may result in ulceration if not detected and treated in time, thus, improving the quality of life of the patients. Ultimately, effective diagnosis using FDD with wavelet analysis, whether it is employed in biomedical applications or manufacturing automation, can have impacts on improving our quality of life.

Position Improvement of a Mobile Robot by Real Time Tracking of Multiple Moving Objects (실시간 다중이동물체 추적에 의한 이동로봇의 위치개선)

  • Jin, Tae-Seok;Lee, Min-Jung;Tack, Han-Ho;Lee, In-Yong;Lee, Joon-Tark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.187-192
    • /
    • 2008
  • The Intelligent Space(ISpace) provides challenging research fields for surveillance, human-computer interfacing, networked camera conferencing, industrial monitoring or service and training applications. ISpace is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human Jollowing by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. This paper describes appearance based unknown object tracking with the distributed vision system in intelligent space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.

A Creative Solution of Distributed Modular Systems for Building Ubiquitous Heterogeneous Robotic Applications

  • Ngo Trung Dung;Lund Henrik Hautop
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.410-415
    • /
    • 2004
  • Employing knowledge of adaptive possibilities of agents in multi-agents system, we have explored new aspects of distributed modular systems for building ubiquitous heterogeneous robotic systems using intelligent building blocks (I-BLOCKS) [1] as reconfigurable modules. This paper describes early technological approaches related to technical design, experimental developments and evaluation of adaptive processing and information interaction among I-BLOCKS allowing users to easily develop modular robotic systems. The processing technology presented in this paper is embedded inside each $DUPLO^1$ brick by microprocessor as well as selected sensors and actuators in addition. Behaviors of an I-BLOCKS modular structure are defined by the internal processing functionality of each I-Block in such structure and communication capacities between I-BLOCKS. Users of the I-BLOCKS system can easily do 'programming by building' and thereby create specific functionalities of a modular robotic structure of intelligent artefacts without the need to learn and use traditional programming language. From investigating different effects of modern artificial intelligence, I-BLOCKS we have developed might possibly contain potential possibilities for developing modular robotic system with different types of morphology, functionality and behavior. To assess these potential I-BLOCKS possibilities, the paper presents a limited range of different experimental scenarios in which I-BLOCKS have been used to set-up reconfigurable modular robots. The paper also reports briefly about earlier experiments of I-BLOCKS created on users' natural inspiration by a just defined concept of modular artefacts.

  • PDF

Odor Cognition and Source Tracking of an Intelligent Robot based upon Wireless Sensor Network (센서 네트워크 기반 지능 로봇의 냄새 인식 및 추적)

  • Lee, Jae-Yeon;Kang, Geun-Taek;Lee, Won-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • In this paper, we represent a mobile robot which can recognize chemical odor, measure concentration, and track its source indoors. The mobile robot has the function of smell that can sort several gases in experiment such as ammonia, ethanol, and their mixture with neural network algorithm and measure each gas concentration with fuzzy rules. In addition, it can not only navigate to the desired position with vision system by avoiding obstacles but also transmit odor information and warning messages earned from its own operations to other nodes by multi-hop communication in wireless sensor network. We suggest the way of odor sorting, concentration measurement, and source tracking for a mobile robot in wireless sensor network using a hybrid algorithm with vision system and gas sensors. The experimental studies prove that the efficiency of the proposed algorithm for odor recognition, concentration measurement, and source tracking.

A Study of Air Pollution Monitoring System using Gossiping Route Protocol in wireless Sensor Network (Gossiping Route Protocol을 이용한 공기오염감지시스템에 관한 연구)

  • Park, Yong-Man;Kim, Hie-Sik;Kim, Gyu-Sik;Lee, Moon-Gyu;Ayurzana, Odgerel;Kwon, Jong-Won;Koo, Sang-Jun;Oh, Shi-Hwan;Kim, Dong-Ki;Jo, Ik-Kyun;Park, Jeong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.485-486
    • /
    • 2007
  • Wireless Sensor Networking is state of the art technology that has a wide range of potential applications. Sensor network generally consists of a large number of distributed nodes that organize themselves into a multi-hop wireless network. Each node has one or more sensors, embedded processors and low-power radios, and is normally battery operated because of small size. In this paper wireless sensor networking technology applies to the environment monitoring system in the underground. This system can monitor a pollution level of the underground in realtime for keeping up a comfortable environment.

  • PDF

Operating μTESLA based on Variable Key-Slot in Multi-Hop Unattended WSN (멀티 홉 Unattended WSN에서 가변 키 슬롯 기반 μTESLA의 운영)

  • Choi, JinChun;Kang, Jeonil;Nyang, DaeHun;Lee, KyungHee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.223-233
    • /
    • 2014
  • As a broadcast message authentication method in wireless sensor networks, ${\mu}$TESLA enables sensor nodes efficiently authenticate message from base station (BS). However, if we use ${\mu}$TESLA that has very short length of key slot in unattended wireless sensor network (UWSN), sensors may calculate a huge amount of hashs at once in order to verify the revealed secret key. In contrast, if we set the length of ${\mu}$TESLA's key slot too long in order to reduce the amount of hashs to calculate, BS should wait out the long slot time to release key. In this paper, we suggest variable key slot ${\mu}$TESLA in order to mitigate the problem. As showing experiment results, we prove that our suggestion improve sensor node's response time and decrease of number of hash function calculation.

Performance monitoring of timber structures in underground construction using wireless SmartPlank

  • Xu, Xiaomin;Soga, Kenichi;Nawaz, Sarfraz;Moss, Neil;Bowers, Keith;Gajia, Mohammed
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.769-785
    • /
    • 2015
  • Although timber structures have been extensively used in underground temporary supporting system, their actual performance is poorly understood, resulting in potentially conservative and over-engineered design. In this paper, a novel wireless sensor technology, SmartPlank, is introduced to monitor the field performance of timber structures during underground construction. It consists of a wooden beam equipped with a streamlined wireless sensor node, two thin foil strain gauges and two temperature sensors, which enables to measure the strain and temperature at two sides of the beam, and to transmit this information in real-time over an IPv6 (6LowPan) multi-hop wireless mesh network and Internet. Four SmartPlanks were deployed at the London Underground's Tottenham Court Road (TCR) station redevelopment site during the Stair 14 excavation, together with seven relay nodes and a gateway. The monitoring started from August 2013, and will last for one and a half years until the Central Line possession in 2015. This paper reports both the short-term and long-term performances of the monitored timber structures. The grouting effect on the short-term performance of timber structures is highlighted; the grout injection process creates a large downward pressure on the top surface of the SmartPlank. The short and long term earth pressures applied to the monitored structures are estimated from the measured strains, and the estimated values are compared to the design loads.