DOI QR코드

DOI QR Code

Investigation of Urban Environmental Quality Using an Integration of Satellite, Ground based measurement data over Seoul, Korea

  • Lee, Kwon-Ho (Dept. of Satellite Geoinformatics Engineering, Kyungil University) ;
  • Wong, Man-Sing (Dept. of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University) ;
  • Kim, Young-J. (Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute of Science & Technology (GIST))
  • Received : 2011.05.31
  • Accepted : 2011.06.19
  • Published : 2011.06.30

Abstract

This study investigates the potentials of satellite, ground measurement data, and geo-spatial information within an urban area for the mapping of the Urban Environmental Quality (UEQ) parameters. The UEQ indicates a complex and various parameters resulting from both human and natural factors, which are greenness, climate, air pollution, the urban infrastructure, and etc. Multi-spectral remote sensing data from the Landsat ETM and TM sensors for the mapping of air pollution by the Haze Optimized Transform (HOT) technique, Urban Heat Island (UHO using the emissivity-fusion method in Seoul from 2000 to 2006 in fine resolution (30m) were analyzed for the estimation of UEQ index. Although the UHI values are similar ($8.4^{\circ}C{\sim}9.1^{\circ}C$) during these years, the spatial coverage of "hot" surface temperature (> $24^{\circ}C$) significantly increased from 2000 to 2006 due to the rapid urban development. Furthermore, high correlations between vegetation index and land surface temperature were achieved with a correlation coefficients of 0.85 (2000), 0.81 (2001), 0.84 (2002), and 0.89 (2006), respectively. It was found that the proposed method was successfully analyzed spatial structure of the UEQ and the scenarios of the best and worst areas within the city were also identified. Based on the quantifiable fine resolution satellite image parameters, UEQ can promote the understanding of the complex and dynamic factors controlling urban environment.

Keywords

Acknowledgement

Supported by : NRF

References

  1. Artis, D. A. and W. H. Carnahan, 1982. Survey of emissivity variability in thermography of urban areas, Remote Sensing of the Environment, 12: 313-329. https://doi.org/10.1016/0034-4257(82)90043-8
  2. Bucholtz, A., 1995. Rayleigh-scattering calculations for the terrestrial atmosphere, Appl. Optics, 34: 2765-2773. https://doi.org/10.1364/AO.34.002765
  3. Chander, G. and B. Markham, 2003. Revised Landsat-5 TM Radiometric Calibration Procedures and Post-calibration Dynamic Ranges, IEEE Transactions on Geoscience and Remote Sensing, 41(11): 2674-2677. https://doi.org/10.1109/TGRS.2003.818464
  4. Dal Moro, G. and L. Halounova, 2007. Haze removal for high-resolution satellite data: A case study, International Journal of Remote Sensing, 28(10): 2187-2205. https://doi.org/10.1080/01431160600928559
  5. Diner, D., J. Beckert, T. H. Reilly, C. Bruegge, J. E. Conel, R. A. Kahn, J. Matonchik, T. P. Ackerman, R. Davies, S. A. W. Gerstl, H. Gordon, J. P. Muller, R. B. Myneni, P. J. Sellers, B. Pinty, and M. M. Verstraete, 1998. Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview, IEEE Transactions on Geosciences and Remote Sensing, 36(4): 1072?1087.
  6. Dwyer, J. F., G. E. Macpherson, H. W. Schoeder, and R. A. Rowntree, 1992. Assessing the benefits and costs of the urban forest, Journal of Arboriculture, 18(5): 227-234.
  7. Forster, B., 1983. Some urban measurements from Landsat data, Photogrammetric Engineering and Remote Sensing, 49(12): 1693-1707.
  8. Gallo, K. P., A. L. Mcnab, T. R. Karl, J. F. Brown, J. J. Hood, and J. D. Tarpley, 1993. The use of NOAA AVHRR data for assessment of the urban heat island effect, Journal of Applied Meteorology, 32: 899-908. https://doi.org/10.1175/1520-0450(1993)032<0899:TUONAD>2.0.CO;2
  9. Gordon, H. R. and M. Wang, 1994. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: preliminary algorithm, Applied Optics, 33(3): 443-452. https://doi.org/10.1364/AO.33.000443
  10. Hess, M., P. Koepke, and I. Schult, 1998. Optical Properties of Aerosols and clouds: The software package OPAC, Bull. Am. Met. Soc., 79: 831-844. https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
  11. Kim, Y. H. and J. J. Baik, 2004. Daily maximum urban heat island intensity in large cities of Korea, Theor. Appl. Climatol., 79: 151-164. https://doi.org/10.1007/s00704-004-0070-7
  12. Klaus, D., E. Jauregui, A. Poth, G. Stein, and M. Voss, 1999. Regular circulation structures in the tropical basin of Mexico City as a consequence of the heat island effect, Erdkunde, 53: 231-243. https://doi.org/10.3112/erdkunde.1999.03.04
  13. Lee, D. H., K. H. Lee, and Y. J. Kim, 2006a. Application of MODIS aerosol data for aerosol type classification, Korean J. of Remote Sensing, 22(6): 495-505. https://doi.org/10.7780/kjrs.2006.22.6.495
  14. Lee, D. H., K. H. Lee, and Y. J. Kim, 2006b. Atmospheric aerosol detection and its removal for satellite data, Korean J. of Remote Sensing, 22(5): 1-5. https://doi.org/10.7780/kjrs.2006.22.5.379
  15. Lee, K. H., Y. J. Kim, and W. von Hoyningen-huene, 2004a. Estimation of aerosol optical thickness over Northeast Asia from SeaWiFS data during the 2001 ACE-Asia IOP, Journal of Geophysical Research, 109, D19S16. https://doi.org/10.1029/2003JD004126
  16. Lee, K. H., C. S. Hong, and Y. J. Kim, 2004b. Atmospheric aerosol monitoring over northeast Asia during 2001 from MODIS and TOMS data, Korean J. of Remote Sensing, 20(2): 77-89. https://doi.org/10.7780/kjrs.2004.20.2.77
  17. Lee, K. H., Y. J. Kim, J. Kim, W. von Hoyningenhuene, and J. P. Burrow, 2006. Influence of land surface effects on MODIS aerosol retrieval using the BAER method over Korea, International Journal of Remote Sensing, 27(14): 2813-2830. https://doi.org/10.1080/01431160500462139
  18. Lee, K. H., L. Zhanqing, and Y. J. Kim, 2007. SWIR/VIS reflectance ratio over Korea for aerosol retrieval, Korean J. of Remote Sensing, 23(1): 1-5. https://doi.org/10.7780/kjrs.2007.23.1.1
  19. Lee, K. H. and Y. J. Kim, 2008. Difference between collection4 and 5 MODIS aerosol products and comparison with ground based measurements, Korean J. of Remote Sensing, 24(4): 369-379. https://doi.org/10.7780/kjrs.2008.24.4.369
  20. Lo, C. P. and B. J. Faber, 1997. Integration of Landsat thematic mapper and census data for quality of life assessment, Remote Sensing of Environment, 62: 143-157. https://doi.org/10.1016/S0034-4257(97)00088-6
  21. Nichol, J. E., 1994. A GIS-based approach to microclimate monitoring in Singapore's high rise housing estates, Photogrammetric Engineering and Remote Sensing, 60: 1225-1232.
  22. Nichol, J. E., 1996. Analysis of the urban thermal environment with LANDSAT data, Environmental Planning B: Planning and Design, 23: 733-747. https://doi.org/10.1068/b230733
  23. Nichol, J. E. and M. S. Wong, 2005. Modeling urban environmental quality in a tropical city, Landscape and Urban Planning, 73: 49-58. https://doi.org/10.1016/j.landurbplan.2004.08.004
  24. Nichol, J. E., M. S. Wong, C. Fung, and K. K. M. Leung, 2006. Assessment of urban environmental quality in a subtropical city using multispectral satellite images, Environmental Planning B: Planning and Design, 33(1): 39-58. https://doi.org/10.1068/b31195
  25. Rao, N. C. R., L. L. Stowe, and E. P. Mcclain, 1989. Remote sensing of aerosols over oceans from AVHRR, International Journal of Remote Sensing, 10(4-5): 743-749. https://doi.org/10.1080/01431168908903915
  26. Remer, L., D. Tanre, and Y. Kaufman, 2006. Algorithm for Remote Sensing of Tropospheric Aerosols from MODIS: Collection 5, Algorithm Theoretical Basis Document, http://modis.gsfc. nasa.5gov/data/atbd/atmosatbd.php.
  27. Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle, 1998. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere, Bulletin of the American Meteorology Society, 79(10): 2101-2114. https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2
  28. Roth, M., T. R. Oke, and W. J. Emery, 1989. Satellite derived urban heat islands from three coastal cities and the utilisation of such data in urban climatology, International Journal of Remote Sensing, 10(11): 1699-1720. https://doi.org/10.1080/01431168908904002
  29. Stathopoulou, M. and C. Cartalis, 2007. Daytime urban heat island from Landsat ETM+ and Corine land cover data: An application to major cities in Greece, Solar Energy, 81: 358-368. https://doi.org/10.1016/j.solener.2006.06.014
  30. Voogt, J. A. and T. R. Oke, 2003. Thermal remote sensing of urban climates, Remote Sensing of Environment, 86(3): 370-384. https://doi.org/10.1016/S0034-4257(03)00079-8
  31. Weber, C. and J. Hirsch, 1992. Some urban measurements from SPOT data: urban life quality indices, International Journal of Remote Sensing, 13(17): 3251-3261. https://doi.org/10.1080/01431169208904116
  32. Weng, Q., 2001. A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China, International Journal of Remote Sensing, 22(10): 1999-2014. https://doi.org/10.1080/713860788
  33. Wong, M. S., J. E. Nichol, and K. H. Lee, 2010a. A satellite view of urban heat island: cuaseative factors and scenario analysis, Korean J. of Remote Sensing, 26(6): 617-627. https://doi.org/10.7780/kjrs.2010.26.6.617
  34. Wong, M. S., K. H. Lee, J. E. Nichol, and Z. Li, 2010b. Retrieval of Aerosol Optical Thickness using MODIS 500${\times}$500$m^{2}$, a study in Hong Kong and Pearl River Delta region, IEEE Transaction of Geoscience and Remote Sensing, 48(8): 3318-3327. https://doi.org/10.1109/TGRS.2010.2045124
  35. Wong, M. S., K. H. Lee, and J. E. Nichol, 2010c. Aerosol optical thickness retrieval using a small satellite, Korean J. of Remote Sensing, 26(6): 605-615. https://doi.org/10.7780/kjrs.2010.26.6.605
  36. Wukelic, G. E., D. E. Gibbons, L. M. Martucci, and H. P. Foote, 1989. Radiometric calibration of Landsat thematic mapper thermal band, Remote Sensing of Environment, 28: 339-347. https://doi.org/10.1016/0034-4257(89)90125-9
  37. Zhang, Y., B. Guindon, and J. Cihlar, 2002. An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images, Remote Sensing of Environment, 82: 173-187. https://doi.org/10.1016/S0034-4257(02)00034-2
  38. Zhang, Y. and B. Guidon, 2003. Quantitative assessment of a haze suppression methodology for satellite Imagery: effect on land cover classification performance, IEEE Transactions on Geoscience and Remote Sensing, 41: 1082-1089. https://doi.org/10.1109/TGRS.2003.811817