• 제목/요약/키워드: multi-sensing data integration

검색결과 21건 처리시간 0.023초

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • 대한원격탐사학회지
    • /
    • 제20권5호
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

Integration of ERS-2 SAR and IRS-1 D LISS-III Image Data for Improved Coastal Wetland Mapping of southern India

  • Shanmugam, P.;Ahn, Yu-Hwan;Sanjeevi, S.;Manjunath, A.S.
    • 대한원격탐사학회지
    • /
    • 제19권5호
    • /
    • pp.351-361
    • /
    • 2003
  • As the launches of a series of remote sensing satellites, there are various multiresolution and multi-spectral images available nowadays. This diversity in remotely sensed image data has created a need to be able to integrate data from different sources. The C-band imaging radar of ERS-2 due to its high sensitivity to coastal wetlands holds tremendous potential in mapping and monitoring coastal wetland features. This paper investigates the advantages of using ERS-2 SAR data combined with IRS-ID LISS-3 data for mapping complex coastal wetland features of Tamil Nadu, southern India. We present a methodology in this paper that highlights the mapping potential of different combinations of filtering and integration techniques. The methodology adopted here consists of three major steps as following: (i) speckle noise reduction by comparative performance of different filtering algorithms, (ii) geometric rectification and coregistration, and (iii) application of different integration techniques. The results obtained from the analysis of optical and microwave image data have proved their potential use in improving interpretability of different coastal wetland features of southern India. Based visual and statistical analyzes, this study suggests that brovey transform will perform well in terms of preserving spatial and spectral content of the original image data. It was also realized that speckle filtering is very important before fusing optical and microwave data for mapping coastal mangrove wetland ecosystem.

Quantitative Comparison of Probabilistic Multi-source Spatial Data Integration Models for Landslide Hazard Assessment

  • Park No-Wook;Chi Kwang-Hoon;Chung Chang-Jo F.;Kwon Byung-Doo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.622-625
    • /
    • 2004
  • This paper presents multi-source spatial data integration models based on probability theory for landslide hazard assessment. Four probabilistic models such as empirical likelihood ratio estimation, logistic regression, generalized additive and predictive discriminant models are proposed and applied. The models proposed here are theoretically based on statistical relationships between landslide occurrences and input spatial data sets. Those models especially have the advantage of direct use of continuous data without any information loss. A case study from the Gangneung area, Korea was carried out to quantitatively assess those four models and to discuss operational issues.

  • PDF

A Survey on the Mobile Crowdsensing System life cycle: Task Allocation, Data Collection, and Data Aggregation

  • Xia Zhuoyue;Azween Abdullah;S.H. Kok
    • International Journal of Computer Science & Network Security
    • /
    • 제23권3호
    • /
    • pp.31-48
    • /
    • 2023
  • The popularization of smart devices and subsequent optimization of their sensing capacity has resulted in a novel mobile crowdsensing (MCS) pattern, which employs smart devices as sensing nodes by recruiting users to develop a sensing network for multiple-task performance. This technique has garnered much scholarly interest in terms of sensing range, cost, and integration. The MCS is prevalent in various fields, including environmental monitoring, noise monitoring, and road monitoring. A complete MCS life cycle entails task allocation, data collection, and data aggregation. Regardless, specific drawbacks remain unresolved in this study despite extensive research on this life cycle. This article mainly summarizes single-task, multi-task allocation, and space-time multi-task allocation at the task allocation stage. Meanwhile, the quality, safety, and efficiency of data collection are discussed at the data collection stage. Edge computing, which provides a novel development idea to derive data from the MCS system, is also highlighted. Furthermore, data aggregation security and quality are summarized at the data aggregation stage. The novel development of multi-modal data aggregation is also outlined following the diversity of data obtained from MCS. Overall, this article summarizes the three aspects of the MCS life cycle, analyzes the issues underlying this study, and offers developmental directions for future scholars' reference.

Application and Development of Integration Technique to Generate Land-cover and Soil Moisture Map Using High Resolution Optical and SAR images

  • Kim Ji-Eun;Park Sang-Eun;Kim Duk-jin;Kim Jun-su;Moon Wooil M.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.497-500
    • /
    • 2005
  • Research and development of remote sensing technique is necessary so that more accurate and extensive information may be obtained. To achieve this goal, the synthesized technique which integrates the high resolution optic and SAR image, and topographical information was examined to investigate the quantitative/qualitative characteristics of the Earth's surface environment. For this purpose, high-precision DEMs of Jeju-Island was generated and data fusion algorithm was developed in order to integrate the multi-spectral optic and polarimetric SAR image. Three dimensional land-cover and two dimensional soil moisture maps were generated conclusively so as to investigate the Earth's surface environments and extract the geophysical parameters.

  • PDF

다중 스케일 지구통계학을 이용한 원격탐사 자료 기반 주제도의 다운스케일링 (Downscaling of Thematic Maps Based on Remote Sensing Data using Multi-scale Geostatistics)

  • 박노욱
    • 대한원격탐사학회지
    • /
    • 제26권1호
    • /
    • pp.29-38
    • /
    • 2010
  • 높은 공간 해상도의 지상 자료와 상대적으로 저해상도인 원격탐사 자료의 통합을 통한 지표 환경 주제도 작성에서는 이러한 해상도의 차이를 반영한 통합 방법론이 필요하다. 이 연구에서는 상대적으로 저해상도인 원격탐사 자료와 지상 자료로부터 고해상도 주제도 작성과 관련된 다운스케일링을 위한 다중 스케일 지구통계학적 방법론을 적용하였다. 기존 정규 크리깅 시스템을 확장하여 포인트 자료로 간주할 수 있는 지상 자료와 블럭 자료로 간주할 수 있는 원격탐사 자료를 크리깅 시스템에 직접 포함하는 블럭 크리깅 방법론을 이용하였다. 부가적으로 다운스케일링에 따른 불확실성을 묘사하기 위해 블럭 크리깅 기반 시뮬레이션 기법도 함께 이용하였다. SRTM DEM과 MODIS 엽면적 지수 자료의 다운 스케일링 실험 연구를 통해 적용 기법의 적용성을 평가하였다. 두가지 실험 연구 결과, 적용 기법을 통해 효과적으로 상대적으로 고해상도 주제도 생성이 가능함을 확인하였으며, 특히 다중 시뮬레이션 결과는 다운 스케일링된 자료를 입력 자료로 사용하는 GIS 모델에 사용하여 모델 결과의 불확실성 분석에 효율적으로 이용될 수 있을 것으로 기대된다.

MULTI-SENSOR INTEGRATION SYSTEM FOR FOREST FIRE PREVENTION

  • Kim Eun Hee;Chi Jeong Hee;Shon Ho Sun;Jung Doo Young;Lee Chung Ho;Ryu Keun Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.450-453
    • /
    • 2005
  • A forest fire occurs mainly as natural factor such as wind, temperature or human factor such as light. Recently, the most of forest fire prevention is prediction or prevision against forest fire by using remote sensing technology. However in order to forest fire prevention, the remote sensing has many limitations such as high cost and advanced technologies and so on. Therefore, we need to multisensor integration system that utilize not only remote sensing but also in-situ sensing in order to reduce large damage of forest fire though analysis of happen cause and prediction routing of occurred forest fire. In this paper we propose a multisensor integration system that offers prediction information of factors and route of forest fire by integrates collected data from remote sensor and in-situ sensor for forest fire prevention. The proposed system is based on wireless sensor network for collect observed data from various sensors. The proposed system not only offers great quality information because firstly, raw data level fuse different format of collected data from remote and in-situ sensor but also accomplish information level fusion based on result of first stage. Offered information from our system can help early prevention of factor and early prevision against occurred forest fire which transfer to SMS service or alert service into monitoring interface of administrator.

  • PDF

3-D Hetero-Integration Technologies for Multifunctional Convergence Systems

  • 이강욱
    • 마이크로전자및패키징학회지
    • /
    • 제22권2호
    • /
    • pp.11-19
    • /
    • 2015
  • Since CMOS device scaling has stalled, three-dimensional (3-D) integration allows extending Moore's law to ever high density, higher functionality, higher performance, and more diversed materials and devices to be integrated with lower cost. 3-D integration has many benefits such as increased multi-functionality, increased performance, increased data bandwidth, reduced power, small form factor, reduced packaging volume, because it vertically stacks multiple materials, technologies, and functional components such as processor, memory, sensors, logic, analog, and power ICs into one stacked chip. Anticipated applications start with memory, handheld devices, and high-performance computers and especially extend to multifunctional convengence systems such as cloud networking for internet of things, exascale computing for big data server, electrical vehicle system for future automotive, radioactivity safety system, energy harvesting system and, wireless implantable medical system by flexible heterogeneous integrations involving CMOS, MEMS, sensors and photonic circuits. However, heterogeneous integration of different functional devices has many technical challenges owing to various types of size, thickness, and substrate of different functional devices, because they were fabricated by different technologies. This paper describes new 3-D heterogeneous integration technologies of chip self-assembling stacking and 3-D heterogeneous opto-electronics integration, backside TSV fabrication developed by Tohoku University for multifunctional convergence systems. The paper introduce a high speed sensing, highly parallel processing image sensor system comprising a 3-D stacked image sensor with extremely fast signal sensing and processing speed and a 3-D stacked microprocessor with a self-test and self-repair function for autonomous driving assist fabricated by 3-D heterogeneous integration technologies.

지표환경 주제도 작성을 위한 크리깅 기법과 원격탐사 자료의 통합 및 불확실성 분석 -입도분포지도 사례 연구- (Integration of Kriging Algorithm and Remote Sensing Data and Uncertainty Analysis for Environmental Thematic Mapping: A Case Study of Sediment Grain Size Mapping)

  • 박노욱;장동호
    • 대한지리학회지
    • /
    • 제44권3호
    • /
    • pp.395-409
    • /
    • 2009
  • 이 논문에서는 퇴적물 입도분포지도 사례 연구를 통해 원격탐사 자료를 부가자료로 이용하는 경우 크리깅 기법이 원격탐사 자료와의 통합과 더불어, 원격탐사 자료의 영향을 분석할 수 있는 불확실성 모델링에 효율적으로 이용될 수 있음을 예시하고자 하였다. 안면도 동쪽 해안과 천수만 연안 지역에서 현장 조사 자료와 입도와 연관성이 높은 Landsat TM 자료의 반사도를 부가 자료로 이용하여 입도 분포도를 작성하였다. 사례 연구 결과, 조건부 분산의 분석을 통해, 샘플링 되지 않은 지역에서의 불확실성은 원격탐사 자료를 부가 자료로 이용함으로써 현저하게 줄어듦을 확인할 수 있었다. 이러한 크리깅 기반 불확실성 모델링 방법론은 입도 분포도 작성뿐만 아니라, 부가 자료의 이용이 가능한 다른 분야에서의 지표환경 주제도 작성에 유용하게 사용될 수 있을 것으로 기대된다.

Analysis of the MSC(Multi-Spectral Camera) Operational Parameters

  • Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun
    • 대한원격탐사학회지
    • /
    • 제18권1호
    • /
    • pp.53-59
    • /
    • 2002
  • The MSC is a payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a GSD(Ground Sample Distance) of 1 m over the entire FOV(Field Of View) at altitude 685 km. The instrument is designed to haute an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The MSC instrument has one channel for panchromatic imaging and four channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI(Time Belayed Integration) CCD(Charge Coupled Device) FPA(Focal Plane Assembly). The MSC hardware consists of three subsystem, EOS(Electro Optic camera Subsystem), PMU(Payload Management Unit) and PDTS(Payload Data Transmission Subsystem) and each subsystems are currently under development and will be integrated and verified through functional and space environment tests. Final verified MSC will be delivered to spacecraft bus for AIT(Assembly, Integration and Test) and then COMSAT-2 satellite will be launched after verification process through IST(Integrated Satellite Test). In this paper, the introduction of MSC, the configuration of MSC electronics including electrical interlace and design of CEU(Camera Electronic Unit) in EOS are described. MSC Operation parameters induced from the operation concept are discussed and analyzed to find the influence of system for on-orbit operation in future.