References
- J. Ji, Y. Guo, D. Gong, and X. Shen, "Evolutionary multi-task allocation for mobile crowdsensing with limited resource,"Swarm and Evolutionary Computation, vol. 63,2021, p. 100872, doi:10.1016/j.swevo.2021.100872.
- S. Kim, C. Robson, T. Zimmerman, J. Pierce, and E. M. Haber, "Creek Watch: Pairing usefulness and usability for successful citizen science,"in Proc. of the ACM Conference on Human Factors in Computing Systems, ser. CHI, 2011, pp. 2125-2134.
- M. Zappatore, A. Longo, and M. A. Bochicchio, "Crowd-sensing our Smart Cities: a Platform for Noise Monitoring and Acoustic Urban Planning," Journal of Communications Software and Systems, vol. 13, no. 2,2017, pp. 53-67. https://doi.org/10.24138/jcomss.v13i2.373
- ] J. Wan, J. Liu, Z. Shao, A. V. Vasilakos, M. Imran, and K. Zhou, "Mobile crowd sensing for traffic prediction in internet of vehicles," Sensors, vol. 16, no. 1, 2016,p. 88.
- P. Simoens et al., "Scalable crowd-sourcing of video from mobile devices," in Proc. 11th Annu. Int. Conf. Mobile Syst. Appl. Services,Taipei, Taiwan, 2013, pp.139-152.
- X Zhao, N Wanga, and R Han, "Urban infrastructure safety system based on mobile crowdsensing," International Journal of Disaster Risk Reduction, Vol. 27,2018, pp. 427-438. https://doi.org/10.1016/j.ijdrr.2017.11.004
- A. Clarke and R. Steele,"Smartphone-based public health information systems: Anonymity, privacy and intervention," Journal of the Association for Information Science and Technology, vol. 66, no. 12, 2015, pp. 2596-2608. https://doi.org/10.1002/asi.23356
- D. Zhang, H. Xiong, L. Wang, and G. Chen, "Crowdrecruiter: selecting participants for piggyback crowdsensing under probabilistic coverage constraint," in Proc. of ACM UbiComp, 2014, pp.703 - 714, doi:10.1145/2632048.2632059.
- F. Anjomshoa and B. Kantarci, "SOBER-MCS: Sociability-oriented and battery efficient recruitment for mobile crowd-sensing," Sensors, vol. 18, no. 5, 2018, p. 1593.
- Zhang, M., Yang, P., Tian, C., Tang, S., Gao, X., Wang, B., & Xiao, F, "Quality-aware sensing coverage in budget-constrained mobile crowdsensing networks," IEEE Trans. Veh. Technol., vol. 65,no. 9, Sep. 2016, pp. 7698-7707. https://doi.org/10.1109/TVT.2015.2490679
- H. Xiong, D. Zhang, G. Chen, L. Wang, and V. Gauthier, "Crowdtasker: Maximizing coverage quality in piggyback crowdsensing under budget constraint," in Pervasive Computing and Communications (PerCom), 2015 IEEE International Conference on, 2015, pp. 55 - 62, doi:10.1109/PERCOM.2015.7146509.
- J. Wang et al., "Fine-grained multitask allocation for participatory sensing with a shared budget," IEEE Internet Things J., vol. 3, no. 6, 2016, pp. 1395-1405. https://doi.org/10.1109/JIOT.2016.2608141
- M. Xiao, J. Wu, L. Huang, Y. Wang, and C. Liu, "Multi-task assignment for crowdsensing in mobile social networks," in IEEE Conference on Computer Communications (INFOCOM), Apr 2015, pp. 2227 - 2235, doi:10.1109/INFOCOM.2015.7218609.
- T. Hu, M. Xiao, C. Hu, G. Gao, and B. Wang, "A Qos-sensitive task assignment algorithm for mobile crowdsensing," Pervasive and Mobile Computing, vol. 41, 2017, pp. 333-342. https://doi.org/10.1016/j.pmcj.2017.01.005
- Z. Song, C. H. Liu, J. Wu, and W. Wang, "QoI-Aware Multitask-Oriented Dynamic Participant Selection With Budget Constraints," IEEE Transactions on Vehicular Technology, vol. 63, no. 9, 2014, pp.4618-4632. https://doi.org/10.1109/TVT.2014.2317701
- B. Guo, Y. Liu, W. Wu, Z. Yu, and Q. Han, "Activecrowd: A framework for optimized multitask allocation in mobile crowdsensing systems," IEEE Transactions on Human-Machine Systems, vol. 47, no. 3, 2017, pp.392-403. https://doi.org/10.1109/THMS.2016.2599489
- J. Wang, Y. Wang, D. Zhang, F. Wang, H. Xiong, C. Chen, Q. Lv, and Z. Qiu, "Multi-task allocation in mobile crowd sensing with individual task quality assurance," IEEE Transactions on Mobile Computing, vol. 17, no. 9, 2018, pp. 2101-2113. https://doi.org/10.1109/TMC.2018.2793908
- H. Xiong, D. Zhang, G. Chen, L. Wang, V. Gauthier, and L. E. Barnes, "iCrowd: Near-Optimal Task Allocation for Piggyback Crowdsensing," IEEE Transactions on Mobile Computing, vol. 15, no. 8, 2016, pp. 2010-2022. https://doi.org/10.1109/TMC.2015.2483505
- Y. Liu, J. Niu, and X. Liu, "Comprehensive tempo-spatial data collection in crowd sensing using a heterogeneous sensing vehicle selection method," Personal and Ubiquitous Computing, vol. 20, no. 3, 2016, pp. 397-411. https://doi.org/10.1007/s00779-016-0932-x
- P. Cheng, X. Lian, L. Chen, J. Han, and J. Zhao, "Task assignment on multi-skill oriented spatial crowdsourcing," IEEE Transactions on Knowledge and Data Engineering, vol.28, no.8, 2016, pp.2201-2215. https://doi.org/10.1109/TKDE.2016.2550041
- D. Deng, C. Shahabi, and U. Demiryurek, "Maximizing the Number of Worker ' s Self-Selected Tasks in Spatial Crowdsourcing," Proc. 21st ACM SIGSPATIAL Int'l. Conf. Advances in Geographic Information Systems, 2013, pp. 324-33, doi:10.1145/2525314.2525370.
- D. Peng, F. Wu, and G. Chen, "Pay as how well you do: A quality based incentive mechanism for crowdsensing," in Proc. 6th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 2015, pp. 177-186, doi:10.1145/2746285.2746306.
- S. Yang, F. Wu, S. Tang, X. Gao, B. Yang, and G. Chen, "On designing data quality-aware truth estimation and surplus sharing method for mobile crowdsensing," IEEE Journal on Selected Areas in Communications, vol. 35, no. 4, 2017, pp. 832-847. https://doi.org/10.1109/JSAC.2017.2676898
- X. Gong and N. Shroff, "Incentivizing truthful data quality for qualityaware mobile data crowdsourcing," in Proceedings of the ACM Mobihoc ' 18, 2018, pp. 161 - 170, doi:10.1145/3209582.3209599 .
- Z. Yu, J. Zhou, W. Guo, L. Guo, and Z. Yu, "Participant selection for t-sweep k-coverage crowd sensing tasks," World Wide Web J., vol. 21, no. 3, 2018, pp. 741-758. https://doi.org/10.1007/s11280-017-0481-x
- Sajana, T., & Narasingarao, M. R. "Majority voting algorithm for diagnosing of imbalanced malaria disease," In International conference on ISMAC in computational vision and bio-engineering . 2018, pp. 31-40, doi:10.1007/978-3-030-00665-5_4.
- X. Yin, J. Han, and P. S. Yu, "Truth discovery with multiple conflicting information providers on the web," Knowledge and Data Engineering, vol. 20, no. 6, 2008, pp. 796-808. https://doi.org/10.1109/TKDE.2007.190745
- Q. Li et al., "A confidence-aware approach for truth discovery on longtail data," Proc. VLDB Endowment, vol. 8, no. 4, 2014, pp. 425-436. https://doi.org/10.14778/2735496.2735505
- M. Y. S. Uddin, H. Wang, F. Saremi, G.-J. Qi, T. Abdelzaher, and T. Huang, "Photonet: a similarity-aware picture delivery service for situation awareness," in Proc. of IEEE RTSS, 2011, pp. 317-326, doi: 10.1109/RTSS.2011.36.
- B. Guo, H. Chen, Z. Yu, X. Xie, and D. Zhang, "Picpick: a generic data selection framework for mobile crowd photography," Personal and Ubiquitous Computing, vol. 20, no. 3, 2016, pp. 325-335, doi:10.1007/s00779-016-0924-x
- L. Cheng et al., "Compressive sensing based data quality improvement for crowd-sensing applications," J. Netw. Comput. Appl., vol. 77, 2017, pp. 123-134. https://doi.org/10.1016/j.jnca.2016.10.004
- M. Zappatore, C. Loglisci, A. Longo, M. A. Bochicchio, L. Vaira, and D. Malerba, "Trustworthiness of context-aware urban pollution data in mobile crowd sensing," IEEE Access, vol. 7, 2019, pp. 154141-154156. https://doi.org/10.1109/ACCESS.2019.2948757
- S. Jagabathula, L. Subramanian, and A. Venkataraman, "Reputation-based worker filtering in crowdsourcing,"In Proceedings of the Advances in Neural Information Processing Systems, 2014, pp. 2492-2500.
- C. Miao, Q. Li, H. Xiao, W. Jiang, M. Huai, and L. Su, "Towards data poisoning attacks in crowd sensing systems," in Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2018, pp. 111-120, doi:10.1145/3209582.3209594.
- C. Zhao, S. Yang, and J. A. McCann, "On the data quality in privacypreserving mobile crowdsensing systems with untruthful reporting," IEEE Transactions on Mobile Computing, 2019, pp. 1 - 1, doi:10.1109/TMC.2019.2943468.
- H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, "Sybillimit: A nearoptimal social network defense against sybil attacks," in Proc. IEEE Symp. SP, 2008, pp. 3 - 17,doi:10.1109/SP.2008.13.
- H. Yu, M. Kaminsky, P. Gibbons, and A. Flaxman, "Sybilguard: Defending against sybil attacks via social networks," Proc. ACM SIGCOMM Comput. Commun. Rev., vol. 36, no. 4, 2006, pp. 267-278. https://doi.org/10.1145/1151659.1159945
- J. Feng, T. Li, Y. Zhai, S. Lv, and F. Zhao, "Ensuring honest data collection against collusive CSDF attack with binary-minmaxs clustering analysis in mobile crowd sensing," IEEE Access, vol. 7, 2019, pp. 124491-124501. https://doi.org/10.1109/ACCESS.2019.2938771
- Satyaki Roy, Nirnay Ghosh, Preetam Ghosh, and Sajal K Das, "biomcs 2.0: A distributed, energy-aware fog-based framework for data forwarding in mobile crowdsensing," Pervasive and Mobile Computing, vol.73, 2021, pp. 101381.
- P. Wang, Z. Yu, C. Lin, L. Yang, Y. Hou, and Q. Zhang, "D2D-enabled reliable data collection for mobile crowd sensing," in 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS), 2020, pp. 180-187, doi:10.1109/ICPADS51040.2020.00033.
- X. Xia, Y. Zhou, J. Li, and R. Yu, "Quality-aware sparse data collection in mec-enhanced mobile crowdsensing systems," IEEE Trans. Computat. Social Syst., vol. 6, no. 5, 2019, pp. 1051-1062. https://doi.org/10.1109/TCSS.2019.2909265
- H. Jin, L. Su, H. Xiao, and K. Nahrstedt, "Incentive mechanism for privacy-aware data aggregation in mobile crowd sensing systems," IEEE/ACM Transactions on Networking (TON), vol. 26, no. 5, 2018, pp. 2019-2032. https://doi.org/10.1109/TNET.2018.2840098
- Z. Zhang, S. He, J. Chen, and J. Zhang, "REAP: An efficient incentive mechanism for reconciling aggregation accuracy and individual privacy in crowdsensing," IEEE Trans. Inf. Forensics Secur., vol. 13, no. 12, 2018, pp. 2995-3007. https://doi.org/10.1109/TIFS.2018.2834232
- L. Yang, M. Zhang, S. He, M. Li, and J. Zhang, "Crowdempowered privacy-preserving data aggregation for mobile crowdsensing," in ACM MobiHoc, 2018, pp. 151-160, doi:10.1145/3209582.3209598.
- Y. Wang, Z. Cai, X. Tong, Y. Gao, and G. Yin, "Truthful incentive mechanism with location privacy-preserving for mobile crowdsourcing systems," Computer Networks, vol. 135, 2018, pp. 32-43. https://doi.org/10.1016/j.comnet.2018.02.008
- M. Zhang, L. Yang, S. He, M. Li, and J. Zhang, "Privacy-preserving data aggregation for mobile crowdsensing with externality: An auction approach," IEEE/ACM Trans. Netw., vol. 29, no. 3, 2021, pp. 1046-1059. https://doi.org/10.1109/TNET.2021.3056490
- Wang, Z., Hu, J., Lv, R., Wei, J., Wang, Q., Yang, D., & Qi, H, "Personalized privacy-preserving task allocation for mobile crowdsensing," IEEE Transactions on Mobile Computing, vol. 18, no. 6, 2018, pp. 1330-1341. https://doi.org/10.1109/TMC.2018.2861393
- Wang, X., Ying, C., & Luo, Y. , "Privacy-friendly decentralized data aggregation for mobile crowdsensing.," In GLOBECOM 2020-2020 IEEE Global Communications Conference ,2020, pp. 1-6, doi:10.1109/GLOBECOM42002.2020.9322169.
- Q. Li, G. Cao, and T. F. L. Porta, "Efficient and privacy-aware data aggregation in mobile sensing," IEEE Transactions on Dependable and Secure Computing, vol. 11, no. 2, 2014, pp. 115-129. https://doi.org/10.1109/TDSC.2013.31
- R. Lu, K. Heung, A. H. Lashkari, and A. A. Ghorbani, "A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT," IEEE Access, vol. 5, 2017, pp. 3302-3312. https://doi.org/10.1109/ACCESS.2017.2677520
- X. Li, S. Liu, F. Wu, S. Kumari, and J. J. P. C. Rodrigues, "Privacy preserving data aggregation scheme for mobile edge computing assisted IoT applications," IEEE Internet Things J., vol. 6, no. 3, 2019, pp. 4755-4763. https://doi.org/10.1109/JIOT.2018.2874473
- F. Liu, B. Zhu, S. Yuan, J. Li, and K. Xue, "Privacy-preserving truth discovery for sparse data in mobile crowdsensing systems," in Proc. IEEE Glob. Commun. Conf., 2021, pp. 1 - 6, doi:10.1109/GLOBECOM46510.2021.9685134.
- S. Kim, K. Lewi, A. Mandal, H. W. Montgomery, A. Roy, and D. Wu, "Function-Hiding Inner Product Encryption is Practical," IACR Cryptology ePrint Archive, vol. 2016, 2016, pp. 440-456.
- T. Ryffel, D. Pointcheval, F. Bach, E. Dufour-Sans, and R. Gay, "Partially encrypted deep learning using functional encryption," in Proc. NeurIPS, Vancouver, BC, Canada, Dec. 2019, pp. 1-21.
- B. Zhao, S. Tang, X. Liu, and X. Zhang, "PACE: Privacy-preserving and quality-aware incentive mechanism for mobile crowdsensing," IEEE Transactions on Mobile Computing, vol. 20, no. 5, 2020, pp. 1924-1939. https://doi.org/10.1109/TMC.2020.2973980
- K. Xie, X. Li, X. Wang, G. Xie, D. Xie, Z. Li, J. Wen, and Z. Diao, "Quick and accurate false data detection in mobile crowd sensing," in Proc. IEEE INFOCOM, 2019, pp. 2215-2223, doi: 10.1109/TNET.2020.2982685.
- Yan, X., Ng, W. W., Zeng, B., Lin, C., Liu, Y., Lu, L., & Gao, Y, "Verifiable, reliable, and privacy-preserving data aggregation in fog-assisted mobile crowdsensing," IEEE Internet of Things Journal, vol. 8, no. 18, 2021, pp. 14127-14140. https://doi.org/10.1109/JIOT.2021.3068490
- W. Zhang, Y. Zhang, L. Ma, J. Guan, and S. Gong, "Multimodal learning for facial expression recognition," Pattern Recognit., vol. 48, no. 10, 2015, pp. 3191-3202. https://doi.org/10.1016/j.patcog.2015.04.012
- B. Yang, T. Mei, X. Hua, L. Yang, S. Yang, and M. Li, "Online video recommendation based on multimodal fusion and relevance feedback," in CIVR, 2007, pp. 73 - 80, doi:10.1145/1282280.1282290.
- L. Pang, S. Zhu, and C.-W. Ngo, "Deep multimodal learning for affective analysis and retrieval," IEEE Transactions on Multimedia, vol. 17, no. 11, 2015, pp. 2008-2020. https://doi.org/10.1109/TMM.2015.2482228
- T. H. Silva, P. O. V. de Melo, A. C. Viana, J. M. Almeida, J. Salles, and A. A.Loureiro, "Traffic Condition Is More Than Colored Lines on a Map: Characterization of Waze Alerts," in Social Informatics, Springer, 2013, pp. 309-318, doi:10.1007/978-3-319-03260-3_27.
- S. Mathur et al., "Parknet: Drive-by Sensing of Road-Side Parking Statistics," Proc. ACM MobiSys, 2010, pp. 123-36, doi:10.1145/1814433.1814448.
- P. Dutta, P. M. Aoki, N. Kumar, A. Mainwaring, C. Myers, W. Willett, and A. Woodruff, "Common sense: participatory urban sensing using a network of handheld air quality monitors," in Proc. of the ACM Conference on Embedded Networked Sensor Systems, 2009, pp. 349 - 350, doi:10.1145/1644038.1644095 .
- Alashaikh A S, Alhazemi F M, "Efficient Mobile Crowdsourcing for Environmental Noise Monitoring," IEEE Access, 2022, vol. 10, pp. 77251-77262. https://doi.org/10.1109/ACCESS.2022.3191780