DOI QR코드

DOI QR Code

A Survey on the Mobile Crowdsensing System life cycle: Task Allocation, Data Collection, and Data Aggregation

  • Xia Zhuoyue (School of Computer Science and Engineering, Taylor's University) ;
  • Azween Abdullah (School of Computer Science and Engineering, Taylor's University) ;
  • S.H. Kok (School of Computer Science and Engineering, Taylor's University)
  • Received : 2023.03.05
  • Published : 2023.03.30

Abstract

The popularization of smart devices and subsequent optimization of their sensing capacity has resulted in a novel mobile crowdsensing (MCS) pattern, which employs smart devices as sensing nodes by recruiting users to develop a sensing network for multiple-task performance. This technique has garnered much scholarly interest in terms of sensing range, cost, and integration. The MCS is prevalent in various fields, including environmental monitoring, noise monitoring, and road monitoring. A complete MCS life cycle entails task allocation, data collection, and data aggregation. Regardless, specific drawbacks remain unresolved in this study despite extensive research on this life cycle. This article mainly summarizes single-task, multi-task allocation, and space-time multi-task allocation at the task allocation stage. Meanwhile, the quality, safety, and efficiency of data collection are discussed at the data collection stage. Edge computing, which provides a novel development idea to derive data from the MCS system, is also highlighted. Furthermore, data aggregation security and quality are summarized at the data aggregation stage. The novel development of multi-modal data aggregation is also outlined following the diversity of data obtained from MCS. Overall, this article summarizes the three aspects of the MCS life cycle, analyzes the issues underlying this study, and offers developmental directions for future scholars' reference.

Keywords

References

  1. J. Ji, Y. Guo, D. Gong, and X. Shen, "Evolutionary multi-task allocation for mobile crowdsensing with limited resource,"Swarm and Evolutionary Computation, vol. 63,2021, p. 100872, doi:10.1016/j.swevo.2021.100872. 
  2. S. Kim, C. Robson, T. Zimmerman, J. Pierce, and E. M. Haber, "Creek Watch: Pairing usefulness and usability for successful citizen science,"in Proc. of the ACM Conference on Human Factors in Computing Systems, ser. CHI, 2011, pp. 2125-2134. 
  3. M. Zappatore, A. Longo, and M. A. Bochicchio, "Crowd-sensing our Smart Cities: a Platform for Noise Monitoring and Acoustic Urban Planning," Journal of Communications Software and Systems, vol. 13, no. 2,2017, pp. 53-67.  https://doi.org/10.24138/jcomss.v13i2.373
  4. ] J. Wan, J. Liu, Z. Shao, A. V. Vasilakos, M. Imran, and K. Zhou, "Mobile crowd sensing for traffic prediction in internet of vehicles," Sensors, vol. 16, no. 1, 2016,p. 88. 
  5. P. Simoens et al., "Scalable crowd-sourcing of video from mobile devices," in Proc. 11th Annu. Int. Conf. Mobile Syst. Appl. Services,Taipei, Taiwan, 2013, pp.139-152. 
  6. X Zhao, N Wanga, and R Han, "Urban infrastructure safety system based on mobile crowdsensing," International Journal of Disaster Risk Reduction, Vol. 27,2018, pp. 427-438.  https://doi.org/10.1016/j.ijdrr.2017.11.004
  7. A. Clarke and R. Steele,"Smartphone-based public health information systems: Anonymity, privacy and intervention," Journal of the Association for Information Science and Technology, vol. 66, no. 12, 2015, pp. 2596-2608.  https://doi.org/10.1002/asi.23356
  8. D. Zhang, H. Xiong, L. Wang, and G. Chen, "Crowdrecruiter: selecting participants for piggyback crowdsensing under probabilistic coverage constraint," in Proc. of ACM UbiComp, 2014, pp.703 - 714, doi:10.1145/2632048.2632059. 
  9. F. Anjomshoa and B. Kantarci, "SOBER-MCS: Sociability-oriented and battery efficient recruitment for mobile crowd-sensing," Sensors, vol. 18, no. 5, 2018, p. 1593. 
  10. Zhang, M., Yang, P., Tian, C., Tang, S., Gao, X., Wang, B., & Xiao, F, "Quality-aware sensing coverage in budget-constrained mobile crowdsensing networks," IEEE Trans. Veh. Technol., vol. 65,no. 9, Sep. 2016, pp. 7698-7707. https://doi.org/10.1109/TVT.2015.2490679
  11. H. Xiong, D. Zhang, G. Chen, L. Wang, and V. Gauthier, "Crowdtasker: Maximizing coverage quality in piggyback crowdsensing under budget constraint," in Pervasive Computing and Communications (PerCom), 2015 IEEE International Conference on, 2015, pp. 55 - 62, doi:10.1109/PERCOM.2015.7146509. 
  12. J. Wang et al., "Fine-grained multitask allocation for participatory sensing with a shared budget," IEEE Internet Things J., vol. 3, no. 6, 2016, pp. 1395-1405.  https://doi.org/10.1109/JIOT.2016.2608141
  13. M. Xiao, J. Wu, L. Huang, Y. Wang, and C. Liu, "Multi-task assignment for crowdsensing in mobile social networks," in IEEE Conference on Computer Communications (INFOCOM), Apr 2015, pp. 2227 - 2235, doi:10.1109/INFOCOM.2015.7218609. 
  14. T. Hu, M. Xiao, C. Hu, G. Gao, and B. Wang, "A Qos-sensitive task assignment algorithm for mobile crowdsensing," Pervasive and Mobile Computing, vol. 41, 2017, pp. 333-342.  https://doi.org/10.1016/j.pmcj.2017.01.005
  15. Z. Song, C. H. Liu, J. Wu, and W. Wang, "QoI-Aware Multitask-Oriented Dynamic Participant Selection With Budget Constraints," IEEE Transactions on Vehicular Technology, vol. 63, no. 9, 2014, pp.4618-4632.  https://doi.org/10.1109/TVT.2014.2317701
  16. B. Guo, Y. Liu, W. Wu, Z. Yu, and Q. Han, "Activecrowd: A framework for optimized multitask allocation in mobile crowdsensing systems," IEEE Transactions on Human-Machine Systems, vol. 47, no. 3, 2017, pp.392-403.  https://doi.org/10.1109/THMS.2016.2599489
  17. J. Wang, Y. Wang, D. Zhang, F. Wang, H. Xiong, C. Chen, Q. Lv, and Z. Qiu, "Multi-task allocation in mobile crowd sensing with individual task quality assurance," IEEE Transactions on Mobile Computing, vol. 17, no. 9, 2018, pp. 2101-2113.  https://doi.org/10.1109/TMC.2018.2793908
  18. H. Xiong, D. Zhang, G. Chen, L. Wang, V. Gauthier, and L. E. Barnes, "iCrowd: Near-Optimal Task Allocation for Piggyback Crowdsensing," IEEE Transactions on Mobile Computing, vol. 15, no. 8, 2016, pp. 2010-2022.  https://doi.org/10.1109/TMC.2015.2483505
  19. Y. Liu, J. Niu, and X. Liu, "Comprehensive tempo-spatial data collection in crowd sensing using a heterogeneous sensing vehicle selection method," Personal and Ubiquitous Computing, vol. 20, no. 3, 2016, pp. 397-411.  https://doi.org/10.1007/s00779-016-0932-x
  20. P. Cheng, X. Lian, L. Chen, J. Han, and J. Zhao, "Task assignment on multi-skill oriented spatial crowdsourcing," IEEE Transactions on Knowledge and Data Engineering, vol.28, no.8, 2016, pp.2201-2215.  https://doi.org/10.1109/TKDE.2016.2550041
  21. D. Deng, C. Shahabi, and U. Demiryurek, "Maximizing the Number of Worker ' s Self-Selected Tasks in Spatial Crowdsourcing," Proc. 21st ACM SIGSPATIAL Int'l. Conf. Advances in Geographic Information Systems, 2013, pp. 324-33, doi:10.1145/2525314.2525370. 
  22. D. Peng, F. Wu, and G. Chen, "Pay as how well you do: A quality based incentive mechanism for crowdsensing," in Proc. 6th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 2015, pp. 177-186, doi:10.1145/2746285.2746306. 
  23. S. Yang, F. Wu, S. Tang, X. Gao, B. Yang, and G. Chen, "On designing data quality-aware truth estimation and surplus sharing method for mobile crowdsensing," IEEE Journal on Selected Areas in Communications, vol. 35, no. 4, 2017, pp. 832-847.  https://doi.org/10.1109/JSAC.2017.2676898
  24. X. Gong and N. Shroff, "Incentivizing truthful data quality for qualityaware mobile data crowdsourcing," in Proceedings of the ACM Mobihoc ' 18, 2018, pp. 161 - 170, doi:10.1145/3209582.3209599 . 
  25. Z. Yu, J. Zhou, W. Guo, L. Guo, and Z. Yu, "Participant selection for t-sweep k-coverage crowd sensing tasks," World Wide Web J., vol. 21, no. 3, 2018, pp. 741-758.  https://doi.org/10.1007/s11280-017-0481-x
  26. Sajana, T., & Narasingarao, M. R. "Majority voting algorithm for diagnosing of imbalanced malaria disease," In International conference on ISMAC in computational vision and bio-engineering . 2018, pp. 31-40, doi:10.1007/978-3-030-00665-5_4. 
  27. X. Yin, J. Han, and P. S. Yu, "Truth discovery with multiple conflicting information providers on the web," Knowledge and Data Engineering, vol. 20, no. 6, 2008, pp. 796-808.  https://doi.org/10.1109/TKDE.2007.190745
  28. Q. Li et al., "A confidence-aware approach for truth discovery on longtail data," Proc. VLDB Endowment, vol. 8, no. 4, 2014, pp. 425-436.  https://doi.org/10.14778/2735496.2735505
  29. M. Y. S. Uddin, H. Wang, F. Saremi, G.-J. Qi, T. Abdelzaher, and T. Huang, "Photonet: a similarity-aware picture delivery service for situation awareness," in Proc. of IEEE RTSS, 2011, pp. 317-326, doi: 10.1109/RTSS.2011.36. 
  30. B. Guo, H. Chen, Z. Yu, X. Xie, and D. Zhang, "Picpick: a generic data selection framework for mobile crowd photography," Personal and Ubiquitous Computing, vol. 20, no. 3, 2016, pp. 325-335, doi:10.1007/s00779-016-0924-x 
  31. L. Cheng et al., "Compressive sensing based data quality improvement for crowd-sensing applications," J. Netw. Comput. Appl., vol. 77, 2017, pp. 123-134.  https://doi.org/10.1016/j.jnca.2016.10.004
  32. M. Zappatore, C. Loglisci, A. Longo, M. A. Bochicchio, L. Vaira, and D. Malerba, "Trustworthiness of context-aware urban pollution data in mobile crowd sensing," IEEE Access, vol. 7, 2019, pp. 154141-154156.  https://doi.org/10.1109/ACCESS.2019.2948757
  33. S. Jagabathula, L. Subramanian, and A. Venkataraman, "Reputation-based worker filtering in crowdsourcing,"In Proceedings of the Advances in Neural Information Processing Systems, 2014, pp. 2492-2500. 
  34. C. Miao, Q. Li, H. Xiao, W. Jiang, M. Huai, and L. Su, "Towards data poisoning attacks in crowd sensing systems," in Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2018, pp. 111-120, doi:10.1145/3209582.3209594. 
  35. C. Zhao, S. Yang, and J. A. McCann, "On the data quality in privacypreserving mobile crowdsensing systems with untruthful reporting," IEEE Transactions on Mobile Computing, 2019, pp. 1 - 1, doi:10.1109/TMC.2019.2943468. 
  36. H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, "Sybillimit: A nearoptimal social network defense against sybil attacks," in Proc. IEEE Symp. SP, 2008, pp. 3 - 17,doi:10.1109/SP.2008.13. 
  37. H. Yu, M. Kaminsky, P. Gibbons, and A. Flaxman, "Sybilguard: Defending against sybil attacks via social networks," Proc. ACM SIGCOMM Comput. Commun. Rev., vol. 36, no. 4, 2006, pp. 267-278.  https://doi.org/10.1145/1151659.1159945
  38. J. Feng, T. Li, Y. Zhai, S. Lv, and F. Zhao, "Ensuring honest data collection against collusive CSDF attack with binary-minmaxs clustering analysis in mobile crowd sensing," IEEE Access, vol. 7, 2019, pp. 124491-124501.  https://doi.org/10.1109/ACCESS.2019.2938771
  39. Satyaki Roy, Nirnay Ghosh, Preetam Ghosh, and Sajal K Das, "biomcs 2.0: A distributed, energy-aware fog-based framework for data forwarding in mobile crowdsensing," Pervasive and Mobile Computing, vol.73, 2021, pp. 101381. 
  40. P. Wang, Z. Yu, C. Lin, L. Yang, Y. Hou, and Q. Zhang, "D2D-enabled reliable data collection for mobile crowd sensing," in 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS), 2020, pp. 180-187, doi:10.1109/ICPADS51040.2020.00033. 
  41. X. Xia, Y. Zhou, J. Li, and R. Yu, "Quality-aware sparse data collection in mec-enhanced mobile crowdsensing systems," IEEE Trans. Computat. Social Syst., vol. 6, no. 5, 2019, pp. 1051-1062.  https://doi.org/10.1109/TCSS.2019.2909265
  42. H. Jin, L. Su, H. Xiao, and K. Nahrstedt, "Incentive mechanism for privacy-aware data aggregation in mobile crowd sensing systems," IEEE/ACM Transactions on Networking (TON), vol. 26, no. 5, 2018, pp. 2019-2032.  https://doi.org/10.1109/TNET.2018.2840098
  43. Z. Zhang, S. He, J. Chen, and J. Zhang, "REAP: An efficient incentive mechanism for reconciling aggregation accuracy and individual privacy in crowdsensing," IEEE Trans. Inf. Forensics Secur., vol. 13, no. 12, 2018, pp. 2995-3007.  https://doi.org/10.1109/TIFS.2018.2834232
  44. L. Yang, M. Zhang, S. He, M. Li, and J. Zhang, "Crowdempowered privacy-preserving data aggregation for mobile crowdsensing," in ACM MobiHoc, 2018, pp. 151-160, doi:10.1145/3209582.3209598. 
  45. Y. Wang, Z. Cai, X. Tong, Y. Gao, and G. Yin, "Truthful incentive mechanism with location privacy-preserving for mobile crowdsourcing systems," Computer Networks, vol. 135, 2018, pp. 32-43.  https://doi.org/10.1016/j.comnet.2018.02.008
  46. M. Zhang, L. Yang, S. He, M. Li, and J. Zhang, "Privacy-preserving data aggregation for mobile crowdsensing with externality: An auction approach," IEEE/ACM Trans. Netw., vol. 29, no. 3, 2021, pp. 1046-1059.  https://doi.org/10.1109/TNET.2021.3056490
  47. Wang, Z., Hu, J., Lv, R., Wei, J., Wang, Q., Yang, D., & Qi, H, "Personalized privacy-preserving task allocation for mobile crowdsensing," IEEE Transactions on Mobile Computing, vol. 18, no. 6, 2018, pp. 1330-1341.  https://doi.org/10.1109/TMC.2018.2861393
  48. Wang, X., Ying, C., & Luo, Y. , "Privacy-friendly decentralized data aggregation for mobile crowdsensing.," In GLOBECOM 2020-2020 IEEE Global Communications Conference ,2020, pp. 1-6, doi:10.1109/GLOBECOM42002.2020.9322169. 
  49. Q. Li, G. Cao, and T. F. L. Porta, "Efficient and privacy-aware data aggregation in mobile sensing," IEEE Transactions on Dependable and Secure Computing, vol. 11, no. 2, 2014, pp. 115-129.  https://doi.org/10.1109/TDSC.2013.31
  50. R. Lu, K. Heung, A. H. Lashkari, and A. A. Ghorbani, "A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT," IEEE Access, vol. 5, 2017, pp. 3302-3312.  https://doi.org/10.1109/ACCESS.2017.2677520
  51. X. Li, S. Liu, F. Wu, S. Kumari, and J. J. P. C. Rodrigues, "Privacy preserving data aggregation scheme for mobile edge computing assisted IoT applications," IEEE Internet Things J., vol. 6, no. 3, 2019, pp. 4755-4763.  https://doi.org/10.1109/JIOT.2018.2874473
  52. F. Liu, B. Zhu, S. Yuan, J. Li, and K. Xue, "Privacy-preserving truth discovery for sparse data in mobile crowdsensing systems," in Proc. IEEE Glob. Commun. Conf., 2021, pp. 1 - 6, doi:10.1109/GLOBECOM46510.2021.9685134. 
  53. S. Kim, K. Lewi, A. Mandal, H. W. Montgomery, A. Roy, and D. Wu, "Function-Hiding Inner Product Encryption is Practical," IACR Cryptology ePrint Archive, vol. 2016, 2016, pp. 440-456. 
  54. T. Ryffel, D. Pointcheval, F. Bach, E. Dufour-Sans, and R. Gay, "Partially encrypted deep learning using functional encryption," in Proc. NeurIPS, Vancouver, BC, Canada, Dec. 2019, pp. 1-21. 
  55. B. Zhao, S. Tang, X. Liu, and X. Zhang, "PACE: Privacy-preserving and quality-aware incentive mechanism for mobile crowdsensing," IEEE Transactions on Mobile Computing, vol. 20, no. 5, 2020, pp. 1924-1939.  https://doi.org/10.1109/TMC.2020.2973980
  56. K. Xie, X. Li, X. Wang, G. Xie, D. Xie, Z. Li, J. Wen, and Z. Diao, "Quick and accurate false data detection in mobile crowd sensing," in Proc. IEEE INFOCOM, 2019, pp. 2215-2223, doi: 10.1109/TNET.2020.2982685. 
  57. Yan, X., Ng, W. W., Zeng, B., Lin, C., Liu, Y., Lu, L., & Gao, Y, "Verifiable, reliable, and privacy-preserving data aggregation in fog-assisted mobile crowdsensing," IEEE Internet of Things Journal, vol. 8, no. 18, 2021, pp. 14127-14140.  https://doi.org/10.1109/JIOT.2021.3068490
  58. W. Zhang, Y. Zhang, L. Ma, J. Guan, and S. Gong, "Multimodal learning for facial expression recognition," Pattern Recognit., vol. 48, no. 10, 2015, pp. 3191-3202.  https://doi.org/10.1016/j.patcog.2015.04.012
  59. B. Yang, T. Mei, X. Hua, L. Yang, S. Yang, and M. Li, "Online video recommendation based on multimodal fusion and relevance feedback," in CIVR, 2007, pp. 73 - 80, doi:10.1145/1282280.1282290. 
  60. L. Pang, S. Zhu, and C.-W. Ngo, "Deep multimodal learning for affective analysis and retrieval," IEEE Transactions on Multimedia, vol. 17, no. 11, 2015, pp. 2008-2020.  https://doi.org/10.1109/TMM.2015.2482228
  61. T. H. Silva, P. O. V. de Melo, A. C. Viana, J. M. Almeida, J. Salles, and A. A.Loureiro, "Traffic Condition Is More Than Colored Lines on a Map: Characterization of Waze Alerts," in Social Informatics, Springer, 2013, pp. 309-318, doi:10.1007/978-3-319-03260-3_27. 
  62. S. Mathur et al., "Parknet: Drive-by Sensing of Road-Side Parking Statistics," Proc. ACM MobiSys, 2010, pp. 123-36, doi:10.1145/1814433.1814448. 
  63. P. Dutta, P. M. Aoki, N. Kumar, A. Mainwaring, C. Myers, W. Willett, and A. Woodruff, "Common sense: participatory urban sensing using a network of handheld air quality monitors," in Proc. of the ACM Conference on Embedded Networked Sensor Systems, 2009, pp. 349 - 350, doi:10.1145/1644038.1644095 . 
  64. Alashaikh A S, Alhazemi F M, "Efficient Mobile Crowdsourcing for Environmental Noise Monitoring," IEEE Access, 2022, vol. 10, pp. 77251-77262. https://doi.org/10.1109/ACCESS.2022.3191780