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Abstract: This paper presents multi-source spatial data inte-
gration models based on probability theory for landslide hazard
assessment. Four probabilistic models such as empirical likeli-
hood ratio estimation, logistic regression, generalized additive
and predictive discriminant models are proposed and applied.
The models proposed here are theoretically based on statistical
relationships between landslide occurrences and input spatial
data sets. Those models especially have the advantage of direct
use of continuous data without any information loss. A case
study from the Gangneung area, Korea was carried out to quan-
titatively assess those four models and to discuss operational
issues.
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1. Introduction

Nowadays, the rapid growth of GIS and remote sens-
ing techniques had made multi-source/sensor spatial data
more available for geoscientific applications. Since most
geoscientific phenomena are connected to various physi-
cal variables, it is necessary to analyze multi-source data
in an integrated way. To deal with enormous amount of
multi-source spatial data, more systematic management
of spatial data is essential to obtain the best reasonable
interpretation. Since the late 1980s, several methods de-
signed for multi-source spatial data integration (e.g.
Bayesian probabilistic models, fuzzy logic, evidential
reasoning, neural network) have been proposed and
tested to various site-specific applications such as min-
eral potential mapping, geological hazard mapping and
land-cover classification [1], [2], [3].

Though much research has been conducted to inte-
grate multi-source spatial data, some operational issues
still arise. Most geoscientific applications generally in-
clude heterogeneous types of data such as categorical
and continuous data. In traditional spatial data integra-
tion methods, continuous data have been converted into
categorized layers with several classes. By converting
the continuous data to categorical data, however, so
much information was lost. In relation to this problem,

[4] incorporated the non-parametric density estimation
procedure into the fuzzy logic framework. They reported
that direct use of the continuous data could improve the
prediction capability.

This paper aims to extend our previous fuzzy logic
approach to probabilistic multi-source spatial data inte-
gration models. Within a probabilistic framework, four
spatial data integration models are proposed and applied
to landslide hazard assessment. The main focus is on the
continuous data representation by adopting statistical
relationships between landslide occurrences and input
continuous data sets. The empirical likelihood ratio
model based on Parzen window estimation, logistic re-
gression, generalized additive model and predictive dis-
criminant model are presented. A cross-validation ap-
proach based on random partitioning is applied to quanti-
tatively assess and compare those four models. The ef-
fects of those proposed models are evaluated through a
case study from the Gangneung area, Korea,

2. Multi-source Spatial Data Integration
Models

1) Problem Formulation

Suppose that there are k spatial data E; (i=1, 2, -, m)
related to landslide occurrences for a specific future land-
slide type in a study area A. The k spatial data consist of
m categorical data and n continuous data (k=m+n). In
landslide hazard assessment, the target is that at each
pixel p, it will be affected by future landslides, denoted
by Tp.

In a probabilistic framework, our final goal is to com-
pute the joint conditional probability at each pixel p, de-
noted by Prob{ Tp!| E,, E,,***, Ey }. In this paper, instead
of computing the joint conditional probability directly,
the likelihood ratio function was used. Unlike a tradi-
tional conditional probability approach, the likelihood
ratio function has the advantage of considering the rela-
tive risk [4].
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The joint likelihood ratio A at p, is defined as:
Prob{E;,E,,A ,E; IT,}

= ! 9]
Prob{E,,E;.A ,E; I T,} (

where Tp denotes the proposition that at each pixel p, it

will not be affected by future landslides.

If the conditional independence assumption is adopted,
the joint likelihood ratio can be expressed as a product of
the joint likelihood ratios of categorical and continuous
data:

Prob{E,,A .E, IT,} Prob{E;,A.E,IT,}
" Prob{E,.A .E, I T,} Prob{E; A E,|T,}
Under the conditional independence assumption, the

joint likelihood ratios can also be a product of the likeli-
hood ratio of the bivariate likelihood ratio at each layer:

k Prob{E, I T.}
x=| |x, A= P
il Prob{E; I T,}

For categorical data representation, a frequency ratio
based method proposed by [4] can be adopted. Four mod-
els that will be discussed in the following subsections
provide specific formulation related to the continuous
data representation.

)

3

2) Empirical Likelihood Ratio Estimation using Parzen
Window Estimation

In this model, the likelihood ratio of continuous data is
estimated by using a Parzen window estimation ap-
proach. This approach computes the empirical frequency
distribution functions in a non-parametric manner. The
predefined kernel functions are centered at past landslide
locations and the density estimations at each location are
derived from the average contribution of each of the ker-
nels at that location.

This paper adopts the kernel function of the Gaussian
type, as defined by the following equation:

NiL)

1 1 (B, (X)-E;(X,))’
Prob{E; IT, } = e i al)
T N(U;h«hn 2K*
_ 1 N(A)»-N(L) 1
Prob{E; IT,}=

NA)-NL) & por

exp- B X =B X))’
2h?

where 1s E;(X,)a set of values of the continuous data

] C)

layer at a landslide location X, and E;(X)refers to a
value of the continuous data layer at location. And h and
X represent the spread parameter value of the Gaussian
kernel and the locations of areas not affected by land-
slides, respectively. N(A) and N(L) also denote the total
number of pixels in the study area and the number of
pixels affected by past landslides, respectively.

3) Logistic Regression

Unlike traditional linear regression, logistic regression
that models the logit of the response probability with a
linear form is appropriate when the dependent variable
(i.e. known landslide occurrences) is dichotomous, such
as the occurrence or non-occurrence of landslides [5]. To
estimate the regression coefficients, logistic regression
generally uses maximum likelihood estimation, rather
than least square estimation.

Prob{E;.A ,E,IT,}
" Prob{E,.A ,E, IT,)
where C=(1-prior probability)/prior probability.

ZC'CXP{ﬁ()*‘ZBiEi} %)
i=1

4) Generalized Additive Model

The generalized additive model extends generalized
linear models by replacing the linear form with the addi-
tive one [5].

Prob{E,.A ,E, IT,}

" Prob(E,.A LE, IT,}

=C-exp{f, + Zf,- (E)} (6
P

where C=(l-prior probability)/prior probability. f; are
unspecified smoothed functions for each of the predic-
tors. This paper applied cubic B-splines to fit smooth
relationships between the predictors and the response.

5) Predictive Discriminant Model

In this model, the frequency distribution functions are
computed by assuming multivariate t-density distribution
functions. This approach adopts a vague prior distribu-
tion for the unknown mean and covariance values and
the estimated density is a weighted average of all mem-
bers of the class of multivariate normal distributions [6].
Details of theoretical backgrounds can be referred to [6].

3. Case Study
1) Study Area and Data Sets

To assess and compare the proposed spatial data inte-
gration models, a case study for landslide hazard assess-
ment was carried out for the Gangneung area, Korea. The
study area had much landslide damage following typhoon
RUSA and heavy rainfall early in September, 2002.
Landslides triggered by intense rainfall resulted in both
extensive damage to property and the loss of life.

To detect the locations of past landslides, multi-
temporal high-resolution remote sensing images (i.e. IK-
ONOS and QUICKBIRD acquired on 14 October, 2001
and 20 July, 2003, respectively) were used for change
detection analysis. After applying a spectral normaliza-
tion algorithm based on regression for reducing the spec-
tral discrepancy caused by differences in acquisition dates
the unsupervised change detection algorithm based on 3D
block segmentation [7] was applied to obtain a map
showing changed areas and non-changed areas. The land-
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slide locations detected from change detection analysis
were then verified by fieldwork and a total of 337 land-
slides were finally mapped (Fig. 1).

As for multi-source spatial data sets related to landslide
occurrences, 5 data layers were considered in this study.
For the categorical data sets, forest type and soil material
maps were used. Continuous data derived from the DEM
of the study area included elevation, slope and aspect
maps.

2) Results

In the likelihood ratio estimation model, a value of 4%
of data range of the spread parameter 4 in the Gaussian
kernel functions was selected experimentally. To imple-
ment the logistic regression and generalized additive
models, we used the S-PLUS statistical package.

After integrating all multi-source spatial data sets using
formulas discussed in Section 2, final landslide hazard
maps were generated wherein each pixel contains the
hazard level measure mapped in the range of 0 to 200
(Fig. 2). This procedure was done to show the relative
hazard levels in the study area. First, all the pixel values
were sorted in descending order and the ordered pixel
values were then classified per high rank 0.5%. This
means that the lowest fuzzy membership value was
mapped as 0 and the highest as 200.

To evaluate the prediction capabilities of the proposed
models, a cross-validation approach based on spatial ran-
dom partitioning was carried out. First, the past landslides
were randomly divided into 2 disjoint groups (i.e. estima-
tion and validation groups). The integrated maps were
generated 2 times using the estimation group, each time

with the remaining group held out as the validation group.

Using rank order statistics, each integrated map was ex-
pressed in terms of relative landslide hazard values in the
study area. Finally, prediction rate curves {2] were com-
puted by comparing the hazard values with all past land-
slides. It should be noted that the prediction rate curves
should be used to interpret the landslide hazard maps
generated by all 337 past landslides shown in Fig.2.

By interpreting the prediction rate curves shown in Fig.
3, it is possible to quantitatively compare the proposed
models. As the validation results, the prediction rates of
the application of the empirical likelihood ratio estima-
tion and predictive discriminant models were higher than
ones by the logistic regression and generalized additive
models. For the empirical likelihood estimation and pre-
dictive discriminant models, the most hazardous 10% of
the area contains about 38% of future landslides (i.e. 128
landslides). Whereas, for the logistic regression and gen-
eralized additive models, about 32% of future landslides

(i.e. 107) were contained in the most hazardous 10% class.

The similar prediction capabilities of the likelihood ratio
and predictive discriminant models means that the fre-
quency distribution functions of three continuous data
may be expressed in terms of both non-parametric (the
empirical likelihood ratio estimation model) and paramet-
ric (the predictive discriminant models) forms. Whereas,

the continuous data sets in the study area may not follow
the assumption of linear relationships between the land-
slide occurrences and the data.

4. Conclusion

To effectively integrate multi-source spatial data, this
paper presented four probabilistic integration models and
applied to landslide hazard assessment. Those models can
directly use the original continuous data without any
categorizing procedure that results in loss of information.
Each model proposed here adopts different assumptions
and problem formulation, though it is theoretically based
on the likelihood ratio function. This means that those
models should be assessed by adopting a proper valida-
tion procedure. As the results from a case of the Gangne-
ung area, Korea, the prediction capability of the empirical
likelihood ratio estimation and predictive discriminant
models were higher than those of the logistic regression
and generalized additive models. However, these results
do not indicate that those two models would always show
the higher prediction capabilities. The integration models
heavily depend on the data sets used. Thus, we will carry
out more case studies to verify the results identified from
this case study. Another future work will include the in-
corporation of socio-economic data into multi-source
spatial data integration tasks for landslide risk analysis.
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(a) (b}
Fig 1. (a) Landslide locations draped over the QUICKBIRD imagery, (b) landslide scars that occurred in the study area.
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(d)
Fig. 2. Landslide hazard maps in the study area. (a) Empirical likelihood ratio estimation model, (b) Logistic regression model
(¢) Generalized additive model, (d) Predictive discriminant model.
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Fig. 3. Prediction rate curves.
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