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Abstract : Nowadays, interests in land cover classification using not only multi-sensor images but also
thematic GIS information are increasing. Often, although useful GIS information for the classification is
available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the
information, due to the fact that it cannot handle the GIS data properly. This paper propose two
extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-
cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique
(BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an
integrated manner. The proposed algorithms were evaluated through supervised land-cover dlassification
with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the
proposed method showed considerable improvements in classification accuracy, when compared with
other multi-spectral classification techniques. The integration of remote sensing images and the land-use
map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when
using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the
extraction of the area with land-cover change. In conclusion, land cover classification results produced
through the integration of various GIS spatial data and multi-spectral images, will be useful to involve
complementary data to make more accurate decisions.

Key Words : Land Cover Classification, Maximum Likelihood Estimation, Bayesian Predictive
Likelihood Estimation, Classification Accuracy.

1. Introduction

The analysis of land cover is a key in land-use plans,
and land cover is closely connected with various
human/physical phenomena. The study and

interpretation of land covers requires much detail for the
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understanding of the underlying processes. However, it
is difficult to get accurate data about land cover features
due to both the necessary manual activity and statistical
analysis of large data sets. Nevertheless, it becomes a
common knowledge that land cover classification can be

greatly facilitated by the use of remotely sensed data
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owing to their wide area coverage, synchronism,
periodicity and economical efficiency.

To perform land cover classification, the integration
of data from multi-sources data including remote
sensing images and GIS thematic information can be
utilized to reduce the classification error obtained by
single-source classification. Conventional parametric
classification methods require that the multi-spectral
data be described by a common statistical model. Such
the models cannot be easily established for combining
different data types, e.g., spectral data from remote
sensing image and categorical data from a GIS. Another
problem with the conventional approach is that the
different data sources might not be equally reliable. The
development of an appropriate model for the
classification of data from multi-sources and different
numeric mode (e.g., a mixture of continuous and
categorical data) is essential for land cover classification.

Several new methodologies for multi-source
integration in land cover classification have been
proposed in the recent years. In a methodological point
of view, they include the Bayesian probabilistic
approach (Solberg et al., 1996; Tso and Mather, 1999;
Warrender and Augusteijn, 1999), the neural networks
(Serpico et al., 1996; Benediktsson and Sveinsson,
1997; Dai and Khorram, 1999), fuzzy sets (Solaiman er
al., 1999) and evidence theory (Peddle, 1995; Peddle
and Ferguson, 2002; Franklin et al., 2002). These
studies include land cover classification: the
development of new land cover classification techniques
through the integration of multi-sensor/source remote
sensing images, and the accuracy verification of these
techniques (Solberg, 1999).

Only a limited set of studies have involved contextual
multi-source classification. Richards ef al. (1982)
extended the methods used for spatial contextual
classification based on probabilistic relaxation to
incorporate ancillary data. Binaghi et al. (1997)
presented a knowledge-based framework for con-textual

classification based on fuzzy set theory. Wan and Fraser
(1994) used multiple self-organizing maps for
contextual classification. Le H’ egarat-Mascle et al.
(1997) combined the use of a Markov random field
model with Dempster-Shafer theory. Smits and
Dellepiane (1997) used a multichannel image
segmentation method based on Markov random fields
with adaptive neighborhoods.

In relation to the use of categorical data in the
classification of remote sensing data, Solberg et al.
(1996) proposed a Markov Random Field model for the
classification of multisource data including Landsat TM
images, ERS-1 SAR images, and categorical GIS
ground cover data. Solberg (1999) also proposed a
methodology for forest map revision by using a Markov
Random Field Model, an existing forest map and remote
sensing data.

Also, recent progress in data acquisition technology
has enabled the simultaneous use of high-resolution
remote sensing images and GIS-based thematic maps.
These all techniques, in tern, require a new analytical
method that is capable of synchronous analysis of GIS
multi-source data.

In this paper, we have extended the Maximum
Likelihood Estimation technique (MLE) to
accommodate both remote sensing imageties and GIS
data for land cover classification. MLE is based on the
assumption that the distribution function of remote
sensing images of each land cover class is normal
distribution with known parameters, the mean vector
and the variance-covariance matrix (Press, 1972).
However, in practice, although the normality
assumption of the distribution functions is reasonable, it
is not possible to assume that we know the mean vectors
and the variance-covariance mafrices of the distribution
functions. In reality, these parameters are estimated from
the input database. When the parameters are estimated
from the data, theoretically MLE is not a right procedure
(Press, 1972; McLallen, 1990) and the proper procedure
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is Bayesian predictive likelihood estimation technique
(BPLE). If there are small samples, it is known that
BPLE shows better performance than that from MLE.
While, for large samples, the performance between
BPLE and MLE is similar.

We also have extended BPLE to handle both remote
sensing images and GIS categorical data. The accuracy
of this classification integration technique was verified
by comparisons made with actual-measured validation
data. The proposed procedure was evaluated using
Landsat ETM+ images and an existing land-use maps,

in the Gongju-si, in Korea.

2. Methodologies

1) Basic idea

Consider r land cover types to be constructed using a
classification method in a study area. We will use k
layers of categorized data layers and h layers of
remotely sensed image data layers for the classification.
We also assume that we have sufficient training data
which is available for each land cover type in the study
area. For a pixel p, let (xq, -+, Xk, Y1, ***, Yn) denote
pixels values at p where the first k values, xg, -+, X
correspond to the categorical data layers and subsequent

h values, yy, *+-, yn represent the continuous data layers.
PIMiIxy, - Xy s b =1 ) (D)

As usual, let denote the conditional probability that the
pixel p belongs to the it class, M; given that (xy, -, X,
Y1, ***, ¥n) are pixels values at p. Often, the probability in
(1) is also called “posterior” probability meaning that it is
the probability that p belongs to M; after observing k+h
pixel values, (xq, ***, Xk, Y1, ***, Yn) at p.

If we know how to compute P{M; | xy, -*+, X, ¥1, ***,
yn} forevery classi (i=1, ---, r) for a given pixel p with
(X1, ***s X, ¥1, ***s Yn), then the classification problem

becomes very simple, in that, we assign the pixel p to

the class g, if P{Mj [ X1, **, Xk, Y1, **, Yn} is the largest
among all P{Mj I xy, -, X, ¥, == ya} =1, ==, 1).
Using Bayes’ theorem (Richards, 1995), we express
the probability in (1) in the following form:
P{M; X1, -, Xio Y1b =+ Y} =
P{x, =, Xk, Y1, =+ Yo | M }P{Mi}
Plxy, = X Y1, - Ya)

, @

where P{M;} is the “prior” probability that the pixel p
belongs to the it class, M; before observing (xy, -+, Xy,
¥1, =**, Yn) at p and it contrasts to the posterior
probability in (1) and
P{xq, - X Y1, 5 Yo} =

S P Xy MOPOL. @)

There are several ways to estimate P{M; | x;, -+, Xy,
Y1, =%, Yu}, A =1, -+-, 1) from the training data. Instead
of estimating P{M; | x, ---, X, ¥1, **, yn} directly in
(1), we can try to obtain it by estimating, equivalently,
P{xy, =, Xk, Y1, ***, ¥n | Mj} and P{M;} from the
training data by using (2). Consider P{x, -**, X, Y1, ***
yn | M3}, the conditional probability that the pixel p has
(X1, ***, Xk Y1, ***, Yn) observations, assuming that the
pixel p comes from the ith class, M;. In other words, it is
the k+h multivariate frequency distribution function of
the pixel values in the M;. Therefore, to estimate the
posterior probability in (1) is equivalent to estimating the
frequency distribution functions of the pixel values in r
classes using the training data. The frequency
distribution function of the class, M is usually expressed
as f1xy, **, X Y1, -+, yn | Mij} instead of P{xy, «--, X,
Y1, ¥ | M}

2) Separation of categorized data layers
and continuous data layers

To handle the multivariate frequency distribution
functions of two difterent types of data layers, we have
made the following assumption of conditional

independence:
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S oy, o yn I M =

Sy, s X M flyn = yn ML (=1, -1, )

Under the assumption of (4), the k + h dimensional
multivariate frequency distribution function, f{xy, -,
Xk, Y1, =+ Yn | M} is expressed as a multiple of the k
dimensional multivariate discrete distribution function
for the categorical data and the h dimensional
multivariate continuous distribution function for the
continuous data and hence we will estimate the
frequency distribution function as a multiple of two
distribution functions, one for categorical data layers and
the other for continuous data layers.

Under most practical circumstances, the conditional
independent assumption in (4) is reasonable except for
some of the categorized data layers were directly

deducted from the continuous data layers

3) Estimation of frequency distribution
function for categorized data layers

Among 1 frequency distribution functions, consider
one f{xj, -+, Xk | Mj} for a pixel p with k pixel values
(X1, =+, %), each x; representing a category in the j™ data
layer where the pixel p belongs to M; class. f{xy, -+, x|
M;} is the m; x mp x -+ x my cross-classified
contingency table, where mj represents the number of
categories in the jt layer. The x; x X5 X «-* x x cell of
the k-dimensional table represents the number of M;
class pixels that belongs to x; category in the 1%t layer,
Xy category in the 20 layer and x, category in the k¥
layer. Let us denote Uy, -+ x, as the unique condition
sub-area (Chung et al., 1995; Clerici et al., 2002) with
the classes, Xxj, --+, Xk and the pixels in the sub-area
belong to the x, category in the 1% layer, the x; category
in the 27¢ Jayer and the xy category in the kth layer. # of
M; class pixels within Uy -+ 5, is the X| X X X ==+ X X
cell of the k-dimensional table.

The first non-parametric estimate of f{x;, -+-, xx | M}
is the empirical frequency distribution function from the

training data:

Sfxp, o x| M} =
# of M class pixels within Uy, - _from the
training data. (&)

However, if we assume that f{x;, ---, X | M;} is the
multivariate multinomial frequency distribution
functions (Johnson and Kotz, 1972). Then, the
maximum likelihood estimate of this multinomial
distribution function is the empirical k-dimensional
contingency table in (5). Although it is simple to
compute, but we strongly suggest NOT using the
estimate in (5), when the number of categorized data
layers is more than two.

The second procedure to estimate f{x;, --+, xx | M}, (i
=1, ---, r) assumes, as in (4), that the k categorical layers

are conditionally independent and hence, we have:
S s MY =f1x IMi} - fixe M}, =1, -+, 1).6)

Instead of considering all the k layers at the same
time, we may estimate the distribution function as a
multiple of k separate distribution functions. Each
separate function is estimated by the empirical
frequency distribution function using each single
categorical data layer:

f{leMi} =# of M class pixels within x; category
within the jt layer Q)

Using (6) and (7) under the conditional independence
assumption, we obtain an empirical estimate of f{x, ---,
x| M} by:

S0, x IV} =F{x IME) - fix ML), (= 1, -+, 1).(8)

As before, if we assume that f{x;, -+, x | M} is the
multivariate multinomial frequency distribution
functions and the conditional independence in (6), then,
the empirical frequency function in (8) is also the
maximum likelihood estimate of f{x, :--, Xk | M;}. We
strongly recommend the use of equation (8) rather than
(5), when the number of categorized data layers is more

than two. When the number is greater than two and the
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number of the classes in each layer is more than five,
then the sizes of many of the unique condition sub-areas
become very small and consequently many of the f{xl,
-+, g | M} are equal to zero. When we integrate the
zero value with the estimate of the frequency
distribution function from the continnous data layers,
they generate an undesirable negative impact on the

classification maps.

4) Estimation of frequency distribution
function for continuous data layers

Consider the frequency distribution function for
continuous data layers, f{y1, -+, yn | M;} for a pixel p
with h pixel values (yj, -, yn), where each y; represents
a real value at y within the j continuous data layer. The
simplest non-parametric estimate for the function is an
empirical frequency distribution function based on either
histogram or kernel method. When the number of layers
is more than two, then such empirical distribution is not
recommended as an estimate. The next non-parametric
procedure requires conditional independence as in (4).
We assume that the h continuous layers are

conditionally independent and hence, we have:
Ly oy tMi} =fy IMi} - fyn IMi}, @ =1, -+, 0).0)

Instead of considering k-dimensional multivariate
distribution functions, we may estimate the frequency
distribution function as a multiple of k separate
univariate frequency distribution functions, where each
univeriate individual distribution is estimated by an

empirical frequency distribution:
Sy v My =fly1 1M} < Flyc I M), (= 1, -+, 1(10)

In many situations, the estimate in (7) is an effective
estimate of f{yi, +:-, yn | Mj}. A parametric estimate of
Sy, =+, yn | Mi} is obtained by assuming that it is the
multivariate normal distribution functions, N(tm, 2m,)
where (v, and 2y, are the k-dimensional mean vectors

for M; class and the k x k dimensional covariance

matrix for M, respectively. Suppose that ﬁMi and )iMi
are the sample mean vector and the sample covariance
matrix computed from the training data, then they are
the maximum likelihood estimates of (i, and Ly,
(Hubert-Moy et al., 2001). Using this MLE (Richards,
1995), we obtain the following estimate:

f{)’l, *Yh [ Ml} =

1 N 2 N
L exp [—;(y—m)' Smly-Aa} (A1)
Sy

2ur

where y = (y, *-, yn) is an h-dimensional vector
containing h observed values and the computation
operations in (11) are vector and matrix calculations.
However, as discussed in Press (1972), instead of the
normal distribution with the sample mean vector and the
sample covariance matrix in (11), the proper distribution
function under the normal assumption with the sample
mean vector and covariance matrix is the multivariate

Student t-distribution function:

Fon I M} =
N; \.
N; b2 F(Tl)Pi
Ni+ D Ni-h ~ (12
F( 3 )I(Ni‘l)ZMi‘
. N . N2 ,(12)
1+ W(Y"ﬂMi)’ M -Aim)

where p; is an estimate of the prior probability,
P{M;}. It should be used as an estimate of f{yi, -, yn |
M;} instead of one in (11).

If the normality assumptions are reasonably realistic
conditions, then we recommend the estimate shown in
(12), but the estimate is almost similar to that in (11) of
the maximum likelihood estimate. In practice, most of
commercial computer packages don’t have a computer
program for (12). In this case, we recommend the use of
(11) instead of (12) because the values are almost
identical. However, if the empirical distribution
functions appear to be far from the normality, then we

recommend the estimate in (10) under the conditional
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independence assumption.

5) Combining the estimates from
categorized and continuous data
layers and decision rule

Under the assumption of (13), the k + h dimensional
multivariate frequency distribution function, f{x, -+,
Xk Y1, ***, Yh | M;} containing both the categorized and
continuous data layers can be expressed as a multiple of
the discrete distribution function for the categorical data
and the continuous distribution function for the
continuous data and we have discussed how these
estimates could be obtained from the training data. We
obtained an estimate of f{x, -+, X, y1, ***, yn | M} by:

f{xl: X V1, s Yh I M) =
i o MY flyn, oy ML, (13)

where f{x,, -, x | My} is obtained by either (5) or
(8) and f{y1, -, yn | M} is obtained by one of (10),
(11) and (12). For every pixel with k+h pixel values, (x;,
oy X Y1, s Vi), We compute f{Xi, -+, X, Vi, ) Y|
M;}, one for each class, i =1, -+-, r. Then we assign the

pixel p to the class g, iff{xl, o, X, Y1, v, Yh [ Mg} is

the largest among allf{xl, o, X V1. o Y I M} (=1,
ey r)'

3. Study area and data collection

This study area covers approximately 247 km?,
located at the center of Chungnam province, occupies a
basin surrounded by Charyeong Mountains in the
northwest and Mt. Gyeryong in the southeast. It lies
between 127°01°00""and 127°13’14” East of longitude
and 3622°42" and 36° 30’01 North of latitude(Fig. 1).

A Landsat ETM+ image was acquired on 16
September 2000. This is a very complicated scene due
to the great mixture of surface features and also the
spatial variability of the land cover. The image was
registered to the Transverse Mercator coordinate system
using 1:25,000 topographic maps.

A land-use map of the study area was obtained as
vector-polygon coverage from the National Geography
Ingtitute (Fig. 2). Twenty-one classes are defined in this
coverage that including residential, industrial,

commercial, agricultural, and natural land uses. The

TM, Bessel

127°05°E

127°10°E

Fig. 1. Location of the Gongju-si area in Korea (Landsat ETM + image acquired on 16 September 2000).
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water
forest

dry field
paddy land
wrban area
bare knd

Fig. 2. land-use map of the study area.

land-use map was constructed for the year 2000 and was
compiled using field survey and aerial photography. The
raw data in the land-use map were converted into grid
data, so that they could be integrated with the Landsat
ETM+ image data. The study area has been
subsequently extracted from this converted database and
reclassified into the same classes as satellite images.
This reclassified land-use map was then integrated with
the Landsat ETM+ image in order to produce a land
cover classification map. The main reason for the use of
the land-use map is as follows. First, the integration of
the existing land-use map with the Landsat ETM+
image can generate the revised land-use map because of
the use of the remote sensing data acquired after the
land-use map generation. Second, information from the
existing land-use map can be regarded as a priori or
temporal contextual information for the probabilistic
classification of the Landsat ETM+ image.

On the basis of an extensive knowledge of the area
and an accurate ground survey carried out during the
period of 1999-2000, 7 classes were found to be
representative of the land cover, as shown in Table 1.
Defined 7 classes in the study area as follows: “water”,
“forest”, “dry field”, “paddy field”, “urban area”, “bare
land” and “sand”.

The training data were extracted from the screen
digitizing of digital maps, aerial photography, and
ground survey. The same training data were used for

comparing different classification techniques. In this

Table 1. Land cover classes and numbers of training and
validation pixels over the study area.

Class Training pixels | Validation pixels
water 1297 28
forest 5684 169
dry field 1097 64
paddy field 2723 83
urban area 1694 44
bare land 908 41
sand 212 21
Total 13615 450

study, a total of 13,615 training data were selected for
comparing all the classifiers. These also were used
integration to accommodate both Landsat ETM+ and
land-use data for land cover classification.

To compute the classification accuracy, a
classification error matrix was first prepared and then
the accuracy statistics were extracted from it. There is a
tendency to overestimate the overall accuracy if the
training set area is used in the classification error matrix.
Reference data were collected from the training data and
from field survey. We selected places exhibiting
uniform spectral characteristics that are evenly located in
the study area. The number of reference pixels used for
the supervised classification was 450. Reference pixel
numbers are shown in Table 1, the pixel numbers are as
follows: 28 for “water”, 169 for the “forest”, 64 for the
“dry field”, 83 for the “paddy field”, 44 for the “urban
area”, 41 for the “bare land” and 21 for “sand”,

respectively.

4. The result of land covers classification
using Landsat ETM+ and land-use maps

In this study, MLE and BPLE techniques were
applied to multi-spectral classification with Landsat
ETM+ information. At the same time, GIS multi-source
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classification, where Landsat ETM+ images and land-
use maps were applied together, was also used.

Table 2 includes all error matrices from integrated
algorithms and two individual techniques. To begin
with, both the MLE and the BPLE techniques showed
similar accuracy in multi-spectral image classification
using the Landsat ETM+ image information. Both
Tables 2 and 3 have shown that MLE and the BPLE
techniques took individually 77.33% and 80.89% of
overall accuracy, respectively. In kappa statistic, the
MLE and the BPLE techniques were 0.72% and 0.76%,
respectively. User’s accuracy exhibited classification
accuracy of over 75% for most class categories. Both
“dry field” and “bare land” showed lower accuracy than
the other class categories. The MLE and the BPLE

techniques in “dry field” especially revealed 46.67% and
54.00%, respectively, which were the lowest values in
classification accuracy. This is due to the similarity in
spectral information in “dry field” and “forest” because
of the sensor recording in autumn, a seasonal factor.

As to producer’s accuracy, for the MLE and the
BPLE techniques, these showed similar classification
accuracy. “Bare land” and “sand” represented the low
classification accuracy. In “bare land”, the MLE and the
BPLE techniques had 80.49% and 68.29%, respectively,
while for “sand” both had an accuracy of 61.91% and
71.43%, respectively. This low classification accuracy in
sand resulted from the similarity in spectral reflectance
of “bare land” with “sand”, which was due to the

presence of sand in bare land.

Table 2. Calculated error matrices for the MLE. (a) Landsat ETM+ data. (b) Landsat ETM+ and land-use map.

From validation
(@) Landsat ETM+ water | forest gg fl pg Sl?iy urban |bareland| sand ACC?]:Z;S( %)
water 23 0 0 0 0 0 1 95.83
forest 0 127 2 2 2 0 0 95.49
dry field 3 41 56 10 7 3 0 46.67
From image paddy field 1 1 3 67 3 0 0 89.34
classification urban 1 0 0 29 3 3 76.32
bare land 0 0 3 3 33 4 73.33
sand 0 0 0 0 2 13 86.67
Producer’s Accuracy(%) | 82.14 | 75.15 | 8750 | 80.72 | 6591 | 8049 | 6191
Overall Accuracy = 77.33%, Overall Kappa Statistic = 0.716%
From validation
(b) Landsat ETM+ and Land-use maps water | forest gg fl Y ggﬁly urban |bareland| sand ACC?E;Z;S( %)
water 24 0 0 0 0 0 0 100.0
forest 0 165 10 1 0 1 0 93.22
dry field 1 2 50 3 5 1 0 80.65
From image paddy field 2 2 1 74 3 0 0 90.24
classification urban 1 0 0 2 35 4 0 83.33
bare land 0 0 3 3 1 33 6 71.74
sand 0 0 0 0 0 2 15 88.24
Producer’s Accuracy(%) | 85.71 97.63 78.12 89.16 79.55 80.49 7143

Overall Accuracy = 88.00%, Overall Kappa Statistic = 0.845%
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Table 3. Calculated error matrices for the BPLE. (a) Landsat ETM+ data. (b} Landsat ETM+ and land-use map.

From validation

(&) Landsat ETM water | forest fgerl}:i pggﬁjy urban |bareland| sand ACCIIJJ:ZZ;S(% )
water 24 0 0 0 0 0 1 96.00
forest 0 147 5 1 2 0 0 94.84
dry field 3 20 54 11 9 3 0 54.00
From image paddy field 1 2 3 68 4 0 0 87.18
classification urban 0 0 0 2 28 6 3 71.80
bare land 0 0 2 1 28 2 82.35
sand 0 0 0 0 0 4 15 78.95

Producer’s Accuracy(%) | 85.71 86.98 84.37 81.92 63.64 68.29 7143
Overall Accuracy = 80.89%, Overall Kappa Statistic = 0.757%
From validation

(b) Landsat ETM+ and Land-use maps water | forest fgg f] P g:ﬁiy urban |bareland| sand Accli:z(r:;ls(% )
water 27 0 0 0 0 0 1 96.43
forest 0 166 7 1 0 1 0 94.86
dry field 0 2 55 3 5 1 0 83.33
From image paddy field 1 1 0 75 4 0 0 9259
classification urban 0 0 0 1 34 4 1 85.00
bare land 0 0 2 3 1 32 1 82.05
sand 0 0 0 0 3 18 85.711

Producer’s Accuracy(%) | 9643 | 9823 | 8594 | 9036 | 7727 | 7805 | 85.71

Overall Accuracy = 90.44%, Overall Kappa Statistic = 0.877%

GIS multi-source land cover classification, in
integrating Landsat ETM+ images and land-use maps,
showed higher accuracy than the land cover
classification with single spectral information. Tables 2
and 3 presented Kappa statistic in MLE and BPLE
techniques with 0.85% and 0.88%, respectively. The
overall accuracy for MLE technique was 88.00% and
the one for BPLE technique was 90.44%. Those
accuracies indicated an improvement of 10.7% in MLE
and 9.6% in BPLE. In terms of user’s accuracy, both
showed a high classification accuracy of over 85% in
most of their class categories. However, “bare land” and
“dry field” had lower accuracy in classification. “Bare
land” in particular, presented an accuracy of MLE and
BPLE techniques with 71.74% and 82.05%,

respectively. This resulted from the classification of
“sand” in the land-use map as the “bare land” area in the
site investigation, and from the multi-spectral image
classification. Producer’s accuracy also showed similar
accuracy in MLE and in BPLE techniques in the case of
user’s accuracy, and had the lowest accuracy for “bare
land” and “sand”. “Sand” had MLE techniques with
71.43%, “bare land” had MLE and BPLE techniques
with 80.49% and 78.05% in accuracy, respectively.
According to the comparison between multi-spectral
image classification and GIS multi-source classification,
the GIS multi-source data produced better classification
with higher accuracy in both MLE and BPLE
techniques. This can be interpreted as a consequence of

the proper representation of spatial image information of
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the land-use map with the integration of the MLE and
BPLE techniques.

The results of land cover classification can be seen in
the study area that the user’s accuracy for each class
category supports the improvement in classification
accuracy: using Landsat ETM+ and land-use maps in
classification resulted in improved accuracy for every
class categories. This was especially considered as an
improvement by the MLE and the BPLE classification
in “dry field” (34.0%, 29.3%).

The relatively low accuracy in this class category,
when multi-spectral image classification was used,
results from the similarity between the spectral
reflections of this category to other ones. The effect is
caused by seasonal factors. The improvement of low
classification accuracy was done through integration

GIS multi-source classification. Fig. 3 shows decrease in

land cover classification for “dry field” where Landsat

(c) BPLE (Landsat ETM+)

(d) BPLE (Landsat ETM+ and land-use map)

ETM+ and land-use maps were used. Many areas
classified as “dry field” in multi-spectral image
classification were classified as forest by GIS multi-
source data.

In producer’s accuracy, the use of Landsat ETM+ and
land-use maps data improved the accuracy in
classification for most categories. The classification
accuracy in “forest” was improved by 22.5% in MLE
technique, mainly because of the improvement of the
“dry field” class. “Dry field” decreased by 9.4% in the
MLE technique, however, this resulted from various
land cover changes in the “dry field” area, based on field
investigation. Figure 2 shows local changes of “dry
field” into “forest” or “bare land”. This shows that
accomplishing land cover classification using the
existing GIS multi-source data could enable the

extraction of the area with changes in land cover.

LEGEND

water
forest

dry field
paddy land
urban area

bare land
sand

Fig. 3. Land cover map of classification from MLE and BPLE using Landsat ETM+ and land-Use data.

~324-



Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

5. Conclusions

Remote Sensing images have been recognized as an
effective means of classifying land cover and monitoring
land cover changes. For land cover classification, an
integrated analysis using high-resolution images, optical
sensor images and GIS categorized data continues to
grow as a consequence of the development of various
data acquisition technologies.

In this paper, we have extended the MLE and BPLE
techniques to accommodate both GIS categorized data
and remote sensing continuous data for land cover
classification. The method is suited for the integration of
remote sensing images captured such as GIS different
dates, by allowing changes in the identities of the pattern
classes. We also incorporate a priori information about
the probability of changes between the acquisitions of
the different data to be integrated. By combining remote
sensing images with GIS thematic data, a more accurate
interpretation of the scene can be obtained.

Combining results from the proposed method showed
considerable improvements in classification accuracy,
when compared with other multi-spectral classification.
In particular, GIS multi-source classification, in
combining Landsat ETM+ images and land-use maps,
showed higher accuracy than the land cover
classification with multi-spectral information only.

The result of land cover classification using remote
sensing images with GIS thematic data appeared as an
improvement in the overall accuracy of 10.7% in MLE
and 9.6% in BPLE classification, respectively. This can
be interpreted as a consequence of the proper
representation of spatial image information of land-use
maps into the combination MLE and BPLE techniques.

User’s accuracy also reflects this improvement in
classification accuracy. As for “dry field” the
classification using Landsat ETM+ and land-use map
improved by 34.0% in MLE and 29.3% in the BPLE

technique, respectively. This class category had a similar

spectral reflectance to other categories due to seasonal
factors, although classification accuracy improved
greatly when integrated with the land-use maps.
Moreover, the producer’s accuracy of classification
improved for most of the categories. “Forest”, in
particular, showed a 22.5% improvement by
classification accuracy in MLE technique. “Dry field”
decreased by 9.4% in the MLE technique using Landsat
ETM+ and land-use map, however, this resulted from
various land cover changes in the “dry field” area, based
on field investigation. This shows that obtaining land
cover classification using the existing GIS categorized
data could enable the extraction of the area with changes
in land cover.

As a result, the expected improvements in the
classification accuracy due to the inclusion of data from
additional GIS data depend on the general discrimination
ability of the multi-spectral data. Even by combining
multi-spectral images containing relatively low
discrimination information, and using partly inaccurate
GIS categorized data, the combination resulted in
significant improvements in classification accuracy.

In the future the general combination model proposed
can be adapted to other classification techniques and
application areas; however, it should be further
evaluated on a larger data set. Land cover classification,
produced through the integration of various GIS spatial
data and multi-sources images, will be useful to involve

complementary data to make more accurate decisions.
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