• 제목/요약/키워드: multi-response optimization

검색결과 217건 처리시간 0.025초

인접건물의 준능동 퍼지제어를 위한 유전자알고리즘 기반 다목적 최적설계 (Multi-objective Optimal Design using Genetic Algorithm for Semi-active Fuzzy Control of Adjacent Buildings)

  • 김현수
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.219-224
    • /
    • 2016
  • 본 연구에서는 지진하중을 받는 인접한 건물의 진동제어를 위한 준능동 제어장치의 제어성능을 검토하였다. 준능동 제어장치로는 MR 감쇠기를 사용하였다. MR 감쇠기로 연결된 인접한 건물을 효과적으로 제어하기 위하여 퍼지제어알고리즘을 사용하였다. MR 감쇠기로 연결된 인접한 건물의 제어시 한쪽 건물의 응답을 저감시키는 것은 다른 한 쪽 건물의 응답을 증가시키는 효과를 가져온다. 따라서 연결된 건물의 제어는 서로 상충되는 특성이 있기 때문에 다목적 최적화문제로 귀결된다. 따라서 본 연구에서는 다목적 유전자알고리즘을 사용하여 MR 감쇠기를 제어하는 퍼지제어알고리즘을 최적화하였다. 수치해석을 통하여 준능동 MR 감쇠기를 이용한 인접건물의 연결제어효과를 검토하였고 매우 우수한 성능을 나타내는 것을 확인하였다.

반응 표면법을 이용한 에스컬레이터의 진동 저감에 관한 연구 (Analysis and Reduction of Escalator Vibration Using the Response Surface Methodology)

  • 임수영;권이석;박찬종;홍성욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.623-628
    • /
    • 2000
  • This paper deals with an analysis and reduction of escalator vibration by using the response surface model. Optimization of the escalator vibration is performed by minimization of the vibration responses which are measured at steps. The response surface models of the factors are constructed by using the experimental data based on the D optimal design method. The multi-objective optimization is also performed by applying desirability function and overlaid contour plot techniques. The optimal solution, which is obtained for a typical escalator system, is applied to reduce the escalator vibration.

  • PDF

NSGA-II 를 통한 송풍기 블레이드의 다중목적함수 최적화 (Multi-Objective Optimization of a Fan Blade Using NSGA-II)

  • 이기상;김광용;압두스사마드
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2690-2695
    • /
    • 2007
  • This work presents numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis. Reynolds-averaged Navier-Stokes (RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

  • PDF

Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.271-294
    • /
    • 2014
  • In recent years, along with the advances made in performance-based design optimization, the need for fast calculation of response parameters in dynamic analysis procedures has become an important issue. The main problem in this field is the extremely high computational demand of time-history analyses which may convert the solution algorithm to illogical ones. Two simplifying strategies have shown to be very effective in tackling this problem; first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication, second, wavelet analysis of earthquake records decreasing the number of acceleration points involved in time-history loading. In this paper, we try to develop an efficient framework, using both strategies, to solve the performance-based multi-objective optimal design problem considering the initial cost and the seismic damage cost of steel moment-frame structures. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency (FEMA) recommended design specifications. The results from numerical application of the proposed framework demonstrate the capabilities of the framework in solving the present multi-objective optimization problem.

Multi-Objective Shape Optimization of an Axial Fan Blade

  • Samad, Abdus;Lee, Ki-Sang;Kim, Kwang-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2008
  • Numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm(NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis is presented in this work. Reynolds-averaged Navier-Stokes(RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

다중 섬 유전자 알고리즘 기반 A60 급 격벽 관통 관의 방화설계에 대한 이산변수 근사최적화 (Approximate Optimization with Discrete Variables of Fire Resistance Design of A60 Class Bulkhead Penetration Piece Based on Multi-island Genetic Algorithm)

  • 박우창;송창용
    • 한국기계가공학회지
    • /
    • 제20권6호
    • /
    • pp.33-43
    • /
    • 2021
  • A60 class bulkhead penetration piece is a fire resistance system installed on a bulkhead compartment to protect lives and to prevent flame diffusion in a fire accident on a ship and offshore plant. This study focuses on the approximate optimization of the fire resistance design of the A60 class bulkhead penetration piece using a multi-island genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class bulkhead penetration piece. For approximate optimization, the bulkhead penetration piece length, diameter, material type, and insulation density were considered discrete design variables; moreover, temperature, cost, and productivity were considered constraint functions. The approximate optimum design problem based on the meta-model was formulated by determining the discrete design variables by minimizing the weight of the A60 class bulkhead penetration piece subject to the constraint functions. The meta-models used for the approximate optimization were the Kriging model, response surface method, and radial basis function-based neural network. The results from the approximate optimization were compared to the actual results of the analysis to determine approximate accuracy. We conclude that the radial basis function-based neural network among the meta-models used in the approximate optimization generates the most accurate optimum design results for the fire resistance design of the A60 class bulkhead penetration piece.

자동미분을 이용한 뼈대구조의 다단계 최적설계 (Multi-Level Optimization of Framed Structures Using Automatic Differentiation)

  • 조효남;정지승;민대홍;이광민
    • 한국강구조학회 논문집
    • /
    • 제12권5호통권48호
    • /
    • pp.569-579
    • /
    • 2000
  • 본 논문에서는 지진하중이 작용하는 뼈대구조에 대해 자동미분(Automatic Differentiation)을 이용한 개선된 다단계 최적설계 알고리즘을 제안하고자 한다. 제안된 알고리즘의 효율성을 위해 전체구조계와 구조요소계 최적설계를 각각 분리하는 분해기법을 적용한 다단계 최적설계기법과 제약조건소거기법을 본 알고리즘에서 조합하여 사용하였다. 또한 수치계산을 효율적으로 수행하기 위해 중간매개변수를 사용하여 휨모멘트나 진동수와 같은 근사구조응답을 이용한 효율적인 재해석기법을 제시하였다. 복잡한 음함수 형태인 동적구조응답에 대한 민감도분석을 정확하고 효율적으로 계산하기 위해 자동미분기법을 사용하였다. 수치예제를 근거로 다단계알고리즘의 효율성과 신뢰성을 기존의 단순다단계알고리즘과 비교하여 제시하였다.

  • PDF

7수준 직교배열을 적용한 터보팬 엔진 설계점 최적화 (Optimization of Turbofan Engine Design Point by using Seven Level Orthogonal Array)

  • 김명호;김유일;이광기;황기영;민성기
    • 한국추진공학회지
    • /
    • 제17권4호
    • /
    • pp.10-15
    • /
    • 2013
  • 설계 최적화를 위해서 설계자는 우선적으로 설계영역 전반에 걸쳐 정확한 정보를 획득하고, 설계영역 탐색을 실시한 후에 최적화를 실시해야 한다. 최근에 설계영역 탐색을 우선적으로 실행하기 위하여 실험계획법과 반응표면모델에 최적화를 적용하는 통합설계 프레임워크의 적용이 산업체 전반으로 일반화되고 있다. 본 연구에서는 터보팬 엔진 설계점 최적화를 위하여, 설계영역의 정보를 조밀하게 얻을 수 있으며 통계학적인 직교성과 균형성을 모두 만족하는 7 수준 직교배열을 생성한 후에 반응표면모델을 구축한다. 구축된 반응표면모델에 전역 최적값을 찾기 위하여 다목적 유전자알고리즘을 적용하여 주어진 제한조건을 만족하는 최적값을 찾아 GasTurb 결과와 검증을 수행한다.

Energy absorption characteristics of diamond core columns under axial crushing loads

  • Azad, Nader Vahdat;Ebrahimi, Saeed
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.605-628
    • /
    • 2016
  • The energy absorption characteristics of diamond core sandwich cylindrical columns under axial crushing process depend greatly on the amount of material which participates in the plastic deformation. Both the single-objective and multi-objective optimizations are performed for columns under axial crushing load with core thickness and helix pitch of the honeycomb core as design variables. Models are optimized by multi-objective particle swarm optimization (MOPSO) algorithm to achieve maximum specific energy absorption (SEA) capacity and minimum peak crushing force (PCF). Results show that optimization improves the energy absorption characteristics with constrained and unconstrained peak crashing load. Also, it is concluded that the aluminum tube has a better energy absorption capability rather than steel tube at a certain peak crushing force. The results justify that the interaction effects between the honeycomb and column walls greatly improve the energy absorption efficiency. A ranking technique for order preference (TOPSIS) is then used to sort the non-dominated solutions by the preference of decision makers. That is, a multi-criteria decision which consists of MOPSO and TOPSIS is presented to find out a compromise solution for decision makers. Furthermore, local and global sensitivity analyses are performed to assess the effect of design variable values on the SEA and PCF functions in design domain. Based on the sensitivity analysis results, it is concluded that for both models, the helix pitch of the honeycomb core has greater effect on the sensitivity of SEA, while, the core thickness has greater effect on the sensitivity of PCF.

절충의사결정방법을 이용한 선박용 3/2WAY 공압밸브의 다목적 최적설계 (Multi-objective Optimization of Marine 3/2WAY Pneumatic Valve using Compromise Decision-Making Method)

  • 김준오;백석흠;김태우;강상모
    • 한국기계가공학회지
    • /
    • 제12권2호
    • /
    • pp.81-90
    • /
    • 2013
  • A study on the flow-structure characteristics of marine 3/2WAY pneumatic valve is essential for optimizing the performance of ship engines. It is important that the valve has desirable safety factor and reduced weight from safety and economic point of view. In this paper, flow-structure characteristics of pneumatic valve is obtained by being optimized based on the proper design criteria. The air with the pressure of 30 bar is the working fluid which is made to fill in the tack in short time. This time is defined as the filling time. On optimum design by considering the flow-structure characteristics, the approach is based on (1) the mathematical formulation of design decisions using the compromise decision-making method, and (2) the approximation technique of response surfaces. The methodology is demonstrated as the multi-objective optimization tool to improve the performance of marine 3/2WAY pneumatic valve.