• Title/Summary/Keyword: multi-residue analysis

Search Result 73, Processing Time 0.021 seconds

Concentration of Hazardous Substances of before/after a Decoction in Prescription of Herbal Medicine -In Prescription of tonify Yang and tonify Yin- (한방처방의 전탕 전과 후의 위해물질 농도변화 -보양.보음 처방을 중심으로 -)

  • Seo, Chang-Seob;Huang, Dae-Sun;Lee, Jun-Kyoung;Ha, Hye-Kyoung;Chun, Jin-Mi;Um, Young-Ran;Jang, Seol;Shin, Hyeun-Kyoo
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.53-63
    • /
    • 2009
  • Objective : To compare the contents of heavy metals, residual pesticides and sulfur dioxide before/after a decoction. Methods : The heavy metal contents before/after a decoction were measured by Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) and mercury analyzer. In order to analyze pesticides in 4 samples we used simultaneous multi-residue analysis of pesticides by GC/ECD, which was followed by GC/MSD analysis to confirm the identity of the detected pesticide in each sample. In addition, the contents of sulfur dioxide ($SO_2$) were performed by Monier-Williams distillation method. Results: 1. The mean values of heavy metal contents (mg/kg) for the samples were as follows: Jaeumganghwa-tang (before decoction - Pb; 1.190, Cd; 0.184, As; 0.099 and Hg; 0.028, after decoction - Pb; .033, Cd; 0.003, As; 0.005 and Hg; 0.001), Yukmijiwhang-tang (before decoction - Pb; 0.484, Cd; 0.133, As; 0.053 and Hg; 0.009, after decoction - Pb; 0.065, Cd; 0.008, As; 0.007 and Hg; not detected), Bojungikgi-tang (before decoction - Pb; 0.863, Cd; 0.197, As; below 0.016 and Hg; 0.011, after decoction - Pb; 0.071, Cd; 0.009, As; 0.004 and Hg; 0.001) and Ssangwha-tang (before decoction - Pb; 1.511, Cd; 0.212, As; 0.094 and Hg; 0.016, after decoction - Pb; 0.029, Cd; 0.006, As; 0.005 and Hg; 0.0004). 2. Contents (mg/kg) of sulfur dioxide ($SO_2$) before a decoction in Jaeumganghwa-tang, Yukmijiwhang-tang and Ssangwha-tang exhibited 22.7, 107.3 and 5.5, respectively. However, contents of sulfur dioxide after a decoction in all samples were not detected. 3. Contents (mg/kg) of residual pesticides before/after a decoction in all samples were not detected. Conclusion : These results will be used to establish a criterion of heavy metals, residual pesticides and sulfur dioxide.

  • PDF

Concentration of Heavy Metals, Residual Pesticides and Sulfur Dioxide before/after a Decoction - In Prescription consist of Sipjeondaebo-tang - (전탕 전과 후의 중금속, 잔류농약 및 잔류이산화황의 농도변화 - 십전대보탕 구성처방을 중심으로 -)

  • Seo, Chang-Seob;Huang, Dae-Sun;Lee, Jun-Kyoung;Ha, Hye-Kyung;Chun, Jin-Mi;Um, Young-Ran;Jang, Seol;Shin, Hyeun-Kyoo
    • The Journal of Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.108-117
    • /
    • 2009
  • Objective: To compare the contents of heavy metals, residual pesticides and sulfur dioxide before/after a decoction. Methods: The heavy metal contents before/after a decoction were measured by inductively-coupled plasma atomic emission spectrometer (ICP-AES) and mercury analyzer. In order to analyze pesticides in 5 samples we used simultaneous multi-residue analysis of pesticides by GC/ECD, which was followed by GC/MSD analysis to confirm the identity of the detected pesticide in each sample. In addition, the contents of sulfur dioxide ($SO_2$) were performed by Monier-Williams distillation method. Results: 1. The mean values of heavy metal contents (mg/kg) for the samples were as follows: Sipjeondaebo-tang (before decoction - Pb; 1.163, Cd; 0.257, As; 0.080 and Hg; 0.016, after decoction - Pb; 0.059, Cd; 0.007, As; 0.006 and Hg; 0.0003), Palmul-tang (before decoction - Pb; 1.181, Cd; 0.242, As; 0.152 and Hg; 0.014, after decoction - Pb; 0.067, Cd; 0.008, As; 0.008 and Hg; 0.0003), Sagunja-tang (before decoction - Pb; 1.285, Cd; 0.283, As; 0.063 and Hg; 0.012, after decoction - Pb; 0.047, Cd; 0.009, As; 0.004 and Hg; not detected) and Samul-tang (before decoction - Pb; 1.025, Cd; 0.169, As; 0.099 and Hg; 0.013, after decoction - Pb; 0.065, Cd; 0.007, As; 0.010 and Hg; 0.001). 2. Contents (mg/kg) of residual pesticides before/after a decoction were not detected in any samples. 3. Contents (mg/kg) of sulfur dioxide ($SO_2$) before a decoction in Sipjeondaebo-tang, Palmul-tang, Sagunja-tang and Samul-tang exhibited 5.0, 6.0, 14.0 and 6.9, respectively. However, contents of sulfur dioxide after a decoction were not detected in any samples. Conclusion: These results will be used to establish a criterion for heavy metals, residual pesticides and sulfur dioxide.

  • PDF

Concentration of Heavy Metals, Residual Pesticides and Sulfur Dioxide of before/after Decoction (중금속, 잔류농약 및 잔류이산화황의 전탕 전, 후의 농도 변화 - 다빈도 태음인 사상처방을 중심으로 -)

  • Seo, Chang-Seob;Huang, Dae-Sun;Lee, Jun-Kyoung;Ha, Hye-Kyoung;Chun, Jin-Mi;Um, Young-Ran;Jang, Seol;Kim, Jong-Yeol;Lee, Si-Woo;Shin, Hyun-Kyoo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.21 no.1
    • /
    • pp.237-246
    • /
    • 2009
  • 1. Objectives To compare the contents of heavy metals, residual pesticides and sulfur dioxide before/after decoction. 2. Methods The heavy metal contents before/after decoction were measured by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) and mercury analyzer. In order to analyze pesticides in 3 samples we used simultaneous multi-residue analysis of pesticides by GC/ECD, followed by GC/MSD analysis to confirm the identity of the detected pesticide in each sample. In addition, the contents of sulfur dioxide (SO2) were performed by Monier-Williams distillation method. 3. Results 1) The mean values of heavy metal contents (mg/kg) for the samples were as follows: Yuldahanso-tang (before decoction - Pb; 1.85, Cd; 0.148, As; 0.042 and Hg; 0.003, after decoction - Pb; 0.096, Cd; 0.006, As; 0.006 and Hg; 0.002), Chongsimyonja-tang (before decoction - Pb; 1.193, Cd; 0.094, As; 0.084 and Hg; 0.008, after decoction - Pb; 0.053, Cd; 0.007, As; 0.011 and Hg; not detected) and Taeyeumjowee-tang (before decoction - Pb; 0.878, Cd; 0.078, As; 0.302 and Hg; 0.004, after decoction - Pb; 0.079, Cd; 0.005, As; 0.006 and Hg; not dectcted). 2) Contents (mg/kg) of residual pesticides before/after decoction in all samples were not detected. 3) Contents (mg/kg) of sulfur dioxide (SO2) before decoction in Yuldahanso-tang, Chongsimyonja-tang and Taeyeumjowee-tang exhibited 6.1, 37.8, 31.5 and 19.7, respectively. However, contents of sulfur dioxide after decoction in all samples were not detected. 4. Conclusion These results will be used to establish a criterion of heavy metals, residual pesticides and sulfur dioxide.

  • PDF

Concentration of Hazardous Substances of Before/after a Decoction- In Prescription of High Frequency - (전탕 전과 후의 한약재 및 처방에 포함된 위해물질의 농도변화 -다빈도 한약 처방을 중심으로-)

  • Seo, Chang-Seob;Huang, Dae-Sun;Lee, Jun-Kyoung;Ha, Hye-Kyoung;Chun, Jin-Mi;Um, Young-Ran;Jang, Seol;Shin, Hyun-Kyoo
    • The Korea Journal of Herbology
    • /
    • v.24 no.2
    • /
    • pp.13-20
    • /
    • 2009
  • Objectives: To compare the contents of hazardous substances before/after a decoction. Methods : The heavy metal contents before/after a decoction were measured by Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) and mercury analyzer. In order to analyze pesticides in 6 samples we used simultaneous multi-residue analysis of pesticides by GC/ECD, which was followed by GC/MSD analysis to confirm the identity of the detected pesticide in each sample. In addition, the contents of sulfur dioxide (S02) were performed by Monier-Williams distillation method. Results : 1. The mean values of heavy metal contents (mg/kg) for the samples were as follows: Socheongryong-tang (before decoction - Pb; 1.115, Cd; 0.179, As; 0.069 and Hg; 0.028, after decoction - Pb; 0.110, Cd; 0.011, As; 0.005 and Hg; 0.002), Insampaedok-san (before decoction - Pb; 1.207, Cd; 0.148, As; 0.171 and Hg; 0.026, after decoction - Pb; 0.075, Cd; 0.006, As; not detected and Hg; O.OOD, Oryung-san (before decoction - Pb; 1.955, Cd; 0.430, As; 0.063 and Hg; 0.027, after decoction - Pb; 0.083, Cd; 0.013, As; 0.006 and Hg; 0.002), Hwangryunhaedok-tang (before decoction - Pb; 1.825, Cd; 0.210, As; 0.050 and Hg; 0.009, after decoction - Pb; 0.107, Cd; 0.010, As; 0.005 and Hg; O.OOD, Bangpungtongseong-san (before decoction - Pb; 1.740, Cd; 0.162, As; 0.585 and Hg; 0.018, after decoction - Pb; 0.041, Cd; 0.006, As; 0.022 and Hg; not detected) and Oyaksungi-san (before decoction - Pb; 1.199, Cd; 0.183, As; 0.321 and Hg; 0.031, after decoction - Pb; 0.096, Cd; 0.008, As; 0.021 and Hg; 0.0004). 2. Contents (mg/kg) of sulfur dioxide (S0$_2$) before a decoction in Socheongryong-tang, Insampaedok-san, Oryung-san, Hwangryunhaedok-tang, Bangpungtongseong-san and Oyaksungi-san exhibited 3.2, 5.7, 4.5, 49.8, 7.8 and 22.4, respectively. However, contents of sulfur dioxide after a decoction in all samples were not detected. 3. Contents (mg/kg) of residual pesticides before/after a decoction in all samples were not detected. Conclusions : These results will be used to establish a criterion of heavy metals, residual pesticides and sulfur dioxide.

Concentration of Heavy Metals, Residual Pesticides and Sulfur Dioxide of before/after a Decoction - In Prescription of Digestive System - (전탕 전과 후의 중금속, 잔류농약 및 잔류이산화황의 농도변화 - 소화기계 약을 중심으로 -)

  • Seo, Chang-Seob;Huang, Dae-Sun;Lee, Jun-Kyoung;Ha, Hye-Kyoung;Chun, Jin-Mi;Um, Young-Ran;Jang, Seol;Shin, Hyun-Kyoo
    • The Korea Journal of Herbology
    • /
    • v.24 no.1
    • /
    • pp.111-119
    • /
    • 2009
  • Objectives : To compare the contents of hazardous substances before/after a decoction. Methods : The heavy metal contents before/after a decoction were measured by Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) and mercury analyzer. In order to analyze pesticides in 6 samples we used simultaneous multi-residue analysis of pesticides by GC/ECD, which was followed by GC/MSD analysis to confirm the identity of the detected pesticide in each sample. In addition, the contents of sulfur dioxide (SO2) were performed by Monier-Williams distillation method. Results : 1. The mean values of heavy metal contents (mg/kg) for the samples were as follows: Samchulkunbi-tang (before decoction - Pb; 1.592, Cd; 0.155, As; 0.055 and Hg; 0.014, after decoction - Pb; 0.036, Cd; 0.002, As; not detected and Hg; 0.001), Yijin-tang (before decoction - Pb; 0.830, Cd; 0.077, As; 0.045 and Hg; 0.015, after decoction - Pb; 0.193, Cd; 0.010, As; not detected and Hg; 0.002), Banhabaikchulcheunma-tang (before decoction - Pb; 0.976, Cd; 0.164, As; 0.167 and Hg; 0.019, after decoction - Pb; 0.031, Cd; 0.003, As; 0.006 and Hg; 0.005), Pyungwi-san (before decoction - Pb; 2.162, Cd; 0.128, As; 0.061 and Hg; 0.018, after decoction - Pb; 0.080, Cd; 0.006, As; not detected and Hg; 0.005), Leejung-tang (before decoction - Pb; 1.480, Cd; 0.294, As; 0.034 and Hg; 0.012, after decoction - Pb; 0.064, Cd; 0.007, As; 0.007 and Hg; 0.002) and Kwibi-tang (before decoction - Pb; 0.907, Cd; 0.193, As; 0.085 and Hg; 0.020, after decoction - Pb; 0.072, Cd; 0.006, As; 0.004 and Hg; 0.002). 2. Contents (mg/kg) of sulfur dioxide ($SO_2$) before a decoction in Banhabaikchulcheunma-tang, Pyungwi-san, Leejung-tang and Kwibi-tang exhibited 3.5, 3.4, 3.8 and 12.4, respectively. However, contents of sulfur dioxide after a decoction in all samples were not detected. 3. Contents (mg/kg) of residual pesticides before/after a decoction in all samples were not detected. Conclusions : These results will be used to establish a criterion of heavy metals, residual pesticides and sulfur dioxide.

Monitoring and Risk Assessment of Pesticide Residues in School Foodservice Agricultural Products in Gwangju Metropolitan Area (광주광역시 학교급식 농산물의 잔류농약 모니터링 및 위해평가)

  • Kim, Jinhee;Lee, Davin;Lee, Mingyou;Ryu, Keunyoung;Kim, Taesun;Gang, Gyungri;Seo, Kyewon;Kim, Jung-Beom
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.283-289
    • /
    • 2019
  • This study was performed to monitor the residual pesticides in agricultural products used in school foodservice in the Gwangju metropolitan area. Risk assessment was also carried out based on the amount of agricultural products consumed. A total of 320 agricultural products supplied to schools in Gwangju were analyzed from 2015 to 2017. The pre-treatment and residual pesticide analysis of these products was conducted in accordance with the second method for multi-residue analysis of pesticides in the Korean food code. The hazard index was calculated by dividing the estimated daily intake (EDI) of pesticides by the acceptable daily intake (ADI). The linearity correlation coefficient for the calibration curve was 0.9923 to 1.0000, LOD 0.004 to 0.019 mg/kg, LOQ 0.012 to 0.057 mg/kg, and recovery was 79.1 to 100.2%. Residual pesticides were detected in 18 (5.6%) of 320 agricultural products used for school foodservice, and one sample of sweet potato stem (0.3%) exceeded the maximum residual limit (MRL). The detection frequency for chili peppers and bell peppers was higher than that for other agricultural products. The frequently-detected pesticides were boscalid and acetamiprid. These results showed that residual pesticide management is needed for chili pepper, bell pepper and sweet potato stem among agricultural products supplied to schools. The hazard index of bifenthrin in sweet potato stem showed the highest (64.18%), and the other pesticides were 0.03-8.23%. These results indicated that agricultural products supplied to schools in Gwangju were safe for consumption. To minimize the intake of residual pesticides, it is necessary to not only thoroughly wash agricultural products but to also ensure the expanded supply of products that are pesticide-free.

Simultaneous Determination and Monitoring of Three Macrolide Antibiotics in Foods by HPLC (Macrolide계 항생물질 동시분석법 확립 및 모니터링)

  • Park, Sang-Ouk;Lee, Sang-Ho;Ahn, Jong-Hoon;Jung, Young-Ji;Kim, Seong-Cheol;Kim, Ji-Yeon;Keum, Eun-Hee;Sung, Ju-Hyun;Kim, Sang-Yub;Jang, Young-Mi;Kang, Chan-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.287-291
    • /
    • 2010
  • In this study, a simple and rapid pre-treatment method based on liquid extraction was applied for the simultaneous determination of three macrolides (spiramycin, tylosin, and tilmicosin) residues. In these studies, the stock farm products was used as a matrix sample. When the liquid extraction method was compared with the solid phase extraction (SPE) method, the former showed higher recovery percentages and simpler steps than the latter. The macrolids were separated using a reverse-phase C18 ($250\;mm{\times}4.6\;mm$, $5\;{\mu}m$) column and a gradient elution with mobile phases consisting of phosphate buffer (pH 2.5) and acetonitrile. Tylosin and tilmicosin were detected at 288 nm and spiramycin was detected at 232 nm. The average recovery percentage ranged between 83.0-90.2% for samples spiked with the three macrolids at 50 and 100 ng/g The validation results showed that the limit of detection (7 (spiramycin), 12 (tilmiconsin), 12 (tylosin) ng/g)) was under the regulatory tolerances and the linearity from calibration curves was satisfactory for determining the multi-residue of three macrolids in farm products. Monitoring samples were collected at the main cities in Korea as Seoul, Busan, Deajeon, Incheon, Deagu, and Gwangju. Microlide antibiotics were not detected in most samples.

Monitoring of 160 Kinds of Pesticide Residues in Commercial Baechu (Chinese) Cabbage Throughout the Year (연중 시중유통 배추에서의 160가지 농약의 잔류실태 모니터링)

  • Park, So-Yeon;Jung, Ji-Kang;Kang, Jeong-Mi;Kim, So-Hee;Yang, Ji-Young;Kang, Soon-Ah;Chun, Hae-Kyoung;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.970-975
    • /
    • 2009
  • The residual amount of 160 kinds of pesticide for multi-analysis methods were analyzed in Baechu cabbages throughout the year by GC/MS. We investigated the 160 kinds of pesticide residues in commercial Baechu cabbages monthly from October 2007 to September 2008. Over the 12 months, the residues were detected in the Baechu cabbages harvested and distributed only in July, August, October and November. The residual amounts were 0.01 ppm Bifenthrin, 0.04 ppm Chlorfenapyr, and 0.03 ppm Bifenthrin in July, October, and November, respectively, and 0.01 2 ppm Bifenthrin in August. All residues were below MRL. These results indicate that the commercial Baechu cabbages are comparatively safe from pesticide residues.

Determination of Carbendazim in Commercial Agricultural Products by LC-MS/MS (LC-MS/MS를 이용한 농산물 중 카벤다짐 분석)

  • Hwang, Lae-Hwong;Lee, Sung-Deuk;Kim, Jeong-Gon;Kim, Ji-Young;Park, So-Hyun;Kim, Ji-Hae;Park, Jung-Hyun;Han, Chang-Ho;Kim, Mu-Sang
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.2
    • /
    • pp.141-146
    • /
    • 2017
  • A rapid and precise method using LC-MS/MS was developed for carbendazim analysis in agricultural products. This compound was extracted with acetonitrile from agricultural products and cleaned up by solid-phase extraction procedure. The limit of detection and quantification were 0.001 mg/kg and 0.004 mg/kg, respectively. The mean recoveries and precision from 4 agricultural products, soybean sprout and mungbean sprout were in the range of 83.3-86.4% and 0.2-3.0% spiked at 1.0 mg/kg and those were in the range of 77.3-90.1% and 1.3-3.8% spiked at 0.02 mg/kg. The present method is faster and more precise compared with the multi-residue method of Korean Food Code. Therefore, we conclude that this method is suitable for carbendazim determination in a wide range of agricultural products.

Monitoring of Pesticide Residues in Floricultural Crops Collected from Floral Farms and Markets in Korea (국내 재배.유통 중인 화훼의 잔류농약 모니터링)

  • Lee, Kyung-Hee;Kim, Seong-Soo;Park, Hong-Ryeol;Ji, Kwang-Yong;Kim, Jong-Geol;Huh, Kun-Yang;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.216-222
    • /
    • 2009
  • The present study aims to monitor pesticide residues in cut flowers collected from the farms and markets. Cut flowers used in this study included rose, lily and chrysanthemum collected from June to September, 2008. Samples were collected once from farms in Hwasung, Goyang (Gyeonggi-do), Inje (Gangwon-do) and thrice from wholesale market in Namdaemunm, Yangjae and Gangnam (Seoul). Total of 24 pesticides (12 fungicides, 11 pesticides and 1 acaricide) were detected from samples collected from farm and total of 64 pesticides (25 fungicides, 36 pesticides, 1 acaricide and 2 fungicides) were detected from samples collected from wholesale market. The highest detection frequency of pesticide from farm was for carbaryl (15%) and for boscalid, fluacrypyrin, fluquinconazole, methomyl, pyraclostrobin, trifloxystrohin (10%), with overall detection of $0.1-36.99\;mg\;kg^{-1}$. While the highest detection frequency of pesticides from wholesale market was for carbaryl, fluquinoconazole and kresoxim-methyl (18.52%), methomyl (16.6%), and methiocarb and thiacloprid (12.96%) with overall detection amount of $0.1-56.2\;mg\;kg^{-1}$. Higher amount of pesticides were detected in leaves than in flowers. Among the pesticides detected, detection frequency of unregistered pesticides for rose, chrysanthemum and lily was 55%, 60% and 63% collected from farms and 47%, 60% and 89% collected from markets, respectively. These pesticides require registration and further monitoring in floricultural crops.