• 제목/요약/키워드: multi-perceptron

검색결과 474건 처리시간 0.024초

Segmentation of Objects with Multi Layer Perceptron by Using Informations of Window

  • Kwak, Young-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권4호
    • /
    • pp.1033-1043
    • /
    • 2007
  • The multi layer perceptron for segmenting objects in images only uses the input windows that are made from a image in a fixed size. These windows are recognized so each independent learning data that they make the performance of the multi layer perceptron poor. The poor performance is caused by not considering the position information and effect of input windows in input images. So we propose a new approach to add the position information and effect of input windows to the multi layer perceptron#s input layer. Our new approach improves the performance as well as the learning time in the multi layer perceptron. In our experiment, we can find our new algorithm good.

  • PDF

가상하도 내에서 2차원 흐름분석을 통한 오염원의 유입 지점 탐색 (Detecting Water Pollution Source based on 2D fluid Analysis in Virtual Channel)

  • 연인성;조용진
    • 한국물환경학회지
    • /
    • 제27권1호
    • /
    • pp.30-35
    • /
    • 2011
  • 2D pollutant transport model was applied to the simulation of contaminant transport in the channel. At first, two kinds of virtual channels having different slopes were designed. The distribution of contaminant, which flows from one of the three drainages to the main channel, was simulated by each 2D model. Concentrations of 745 nodes were converted to input data of neural network model (Multi-perceptron) for training and verification using matrix. The first three cases (Case A-1, A-2, A-3) were used for training Multi-perceptron, the other three cases (Case B-1, B-2, B-3) were used for verification. As a result, Multi-perceptron reasonably divided the cases into the three characteristics which have different contaminant distributions due to the different input point of water pollution source. It can be a useful methodology for the water quality monitoring and backtracking.

퍼셉트론을 이용하는 멀티코어 프로세서의 성능 연구 (A Performance Study of Multi-Core Processors with Perceptrons)

  • 이종복
    • 전기학회논문지
    • /
    • 제63권12호
    • /
    • pp.1704-1709
    • /
    • 2014
  • In order to increase the performance of multi-core system processor architectures, the multi-thread branch predictor which speculatively fetches and allocates threads to each core should be highly accurate. In this paper, the perceptron based multi-thread branch predictor is proposed for the multi-core processor architectures. Using SPEC 2000 benchmarks as input, the trace-driven simulation has been performed for the 2 to 16-core architectures employing perceptron multi-thread branch predictor extensively. Its performance is compared with the architecture which utilizes the two-level adaptive multi-thread branch predictor.

Web access prediction based on parallel deep learning

  • Togtokh, Gantur;Kim, Kyung-Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권11호
    • /
    • pp.51-59
    • /
    • 2019
  • 웹에서 정보 접근에 대한 폭발적인 주문으로 웹 사용자의 다음 접근 페이지를 예측하는 필요성이 대두되었다. 웹 접근 예측을 위해 마코브(markov) 모델, 딥 신경망, 벡터 머신, 퍼지 추론 모델 등 많은 모델이 제안되었다. 신경망 모델에 기반한 딥러닝 기법에서 대규모 웹 사용 데이터에 대한 학습 시간이 엄청 길어진다. 이 문제를 해결하기 위하여 딥 신경망 모델에서는 학습을 여러 컴퓨터에 동시에, 즉 병렬로 학습시킨다. 본 논문에서는 먼저 스파크 클러스터에서 다층 Perceptron 모델을 학습 시킬 때 중요한 데이터 분할, shuffling, 압축, locality와 관련된 기본 파라미터들이 얼마만큼 영향을 미치는지 살펴보았다. 그 다음 웹 접근 예측을 위해 다층 Perceptron 모델을 학습 시킬 때 성능을 높이기 위하여 이들 스파크 파라미터들을 튜닝 하였다. 실험을 통하여 논문에서 제안한 스파크 파라미터 튜닝을 통한 웹 접근 예측 모델이 파라미터 튜닝을 하지 않았을 경우와 비교하여 웹 접근 예측에 대한 정확성과 성능 향상의 효과를 보였다.

다층 신경망과 피부색 모델을 이용한 피부 영역 검출 (Skin Region Extraction Using Multi-Layer Neural Network and Skin-Color Model)

  • 박성욱;박종욱
    • 한국산업정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.31-38
    • /
    • 2011
  • 피부색은 자동화된 얼굴 인식을 위한 매우 중요한 정보 중의 하나이다. 본 논문에서는 다층 신경망(Multi-Layer Perceptron)을 이용한 피부 영역 검출 기법을 제안하였다. 제안된 방법은 적응적 조명 보정 기법을 통해 피부색 영역의 검출 성능을 개선하였고, 전처리 필터를 적용하여 피부색이 아닌 영역을 먼저 제거시킴으로써 처리 속도를 향상시켰다. 제안된 방법의 실험 결과 기존의 방법과 비교하여 보다 우수한 검출 결과를 나타냈으며, 처리 속도 또한 약 31~49% 향상시킬 수 있었다.

오류 역전파 학습에서 확률적 가중치 교란에 의한 전역적 최적해의 탐색 (Searching a global optimum by stochastic perturbation in error back-propagation algorithm)

  • 김삼근;민창우;김명원
    • 전자공학회논문지C
    • /
    • 제35C권3호
    • /
    • pp.79-89
    • /
    • 1998
  • The Error Back-Propagation(EBP) algorithm is widely applied to train a multi-layer perceptron, which is a neural network model frequently used to solve complex problems such as pattern recognition, adaptive control, and global optimization. However, the EBP is basically a gradient descent method, which may get stuck in a local minimum, leading to failure in finding the globally optimal solution. Moreover, a multi-layer perceptron suffers from locking a systematic determination of the network structure appropriate for a given problem. It is usually the case to determine the number of hidden nodes by trial and error. In this paper, we propose a new algorithm to efficiently train a multi-layer perceptron. OUr algorithm uses stochastic perturbation in the weight space to effectively escape from local minima in multi-layer perceptron learning. Stochastic perturbation probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the EGP learning gets stuck to it. Addition of new hidden nodes also can be viewed asa special case of stochastic perturbation. Using stochastic perturbation we can solve the local minima problem and the network structure design in a unified way. The results of our experiments with several benchmark test problems including theparity problem, the two-spirals problem, andthe credit-screening data show that our algorithm is very efficient.

  • PDF

시선 깊이 추정 기법을 이용한 OST-HMD 자동 스위칭 방법 (Method for Automatic Switching Screen of OST-HMD using Gaze Depth Estimation)

  • 이영호;신춘성
    • 스마트미디어저널
    • /
    • 제7권1호
    • /
    • pp.31-36
    • /
    • 2018
  • 본 논문에서는 시선 깊이 추정 기술을 이용한 OST-HMD의 자동화면 on/off 기능을 제안한다. 제안하는 방법은 MLP(Multi-layer Perceptron)을 이용하여 사용자의 시선 정보와 보는 물체의 거리를 학습 한 후, 시선 정보만 입력하여 거리를 추정한다. 학습 단계에서는 착용 할 수 있는 양안 추적기를 사용하여 시선 관련 특징을 얻는다. 그런 다음 이 특징을 다층 퍼셉트론 (MLP: Multi-layer Perceptron)에 입력하여 학습하고 모델을 생성한다. 추론 단계에서는 안구 추적기로부터 실시간으로 시선 관련 특징을 얻고 이를 MLP에 입력하여 추정 깊이 값을 얻는다. 마지막으로 HMD의 화면을 켜거나 끌 것인지 여부를 결정하기 위해 이 계산결과를 활용한다. 제안된 방법의 가능성을 평가하기 위해 프로토타입을 구현하고 실험을 수행하였다.

중첩 이동 네트워크에서 Multi-layered Perceptron을 이용한 최적의 이동 라우터 지정 방안 (Mobile Router Decision Using Multi-layered Perceptron in Nested Mobile Networks)

  • 송지영
    • 한국정보통신학회논문지
    • /
    • 제17권12호
    • /
    • pp.2843-2852
    • /
    • 2013
  • 중첩된 환경의 이동 네트워크에서 이동 노드는 여러 개의 이동 라우터 중 하나를 선정하여 정보를 교환하게 된다. 이동 노드에게 기존의 상향식 또는 하향식 방법으로 지정된 이동 라우터는 최적의 이동 라우터가 아닐 수 있다. 이러한 경우, 이동 노드는 빈번한 핸드오버 및 바인딩 갱신을 발생시켜 이동 노드의 QoS(Quality of Service)를 저해 할 수 있다. 본 논문에서는 중첩된 환경의 이동 네트워크에서 이동 노드의 이동 특성과 이동 라우터의 QoS 정보를 기반으로 최적의 이동 라우터를 선정하는 방안을 제시한 후, MLP(Multi-layered Perceptron)를 이용하여 중첩 이동 네트워크의 이동 라우터 선정 방안을 학습시킨다. 학습된 MLP의 학습 결과와 실제 선정 결과를 분석하여 제안한 MLP 구조가 대규모의 중첩된 환경의 이동 네트워크에서 사용 가능함을 증명한다.

VQ와 Multi-layer perceptron을 이용한 단모음 인식에 관한 연구 (A Study on Single Vowels Recognition using VQ and Multi-layer Perceptron)

  • 안태옥;이상훈;김순협
    • 한국음향학회지
    • /
    • 제12권1호
    • /
    • pp.55-60
    • /
    • 1993
  • 본 논문은 불특정 화자의 단모음 인식에 관한 연구로써, VQ(Vectro Quantization)와 MLP(multi-layer perceptron)에 의한 음성 인식 방법을 제안한다. 이 방법은 VQ codebook을 구하고 이를 이용해서 관측열(observation sequence)을 구해각 codeword가 데이터로부터 가질 수 있는 확률값을 계산하여 이 값을 신경 회로망의 입력으로 사용하는 방법이다. 인식 대상으로는 한국어 단모음을 선정하였으며 10명의 남성 화자가 8개의 단모음을 10번씩 발음한 것으로 시스템의 효율성을 알아보기 위해 VQ/HMM(hidden markov model)에 의한 인식과 비교 실험한다. 실험 결과에 의하면, 시스템의 단순성에도 불구하고 학습능력애 뛰어난 관계로 VQ/HMM보다 VQ와 MLP에 의한 음성 인식률이 향상됨을 보여준다.

  • PDF

Hydrological Modelling of Water Level near "Hahoe Village" Based on Multi-Layer Perceptron

  • Oh, Sang-Hoon;Wakuya, Hiroshi
    • International Journal of Contents
    • /
    • 제12권1호
    • /
    • pp.49-53
    • /
    • 2016
  • "Hahoe Village" in Andong region is an UNESCO World Heritage Site. It should be protected against various disasters such as fire, flooding, earthquake, etc. Among these disasters, flooding has drastic impact on the lives and properties in a wide area. Since "Hahoe Village" is adjacent to Nakdong River, it is important to monitor the water level near the village. In this paper, we developed a hydrological modelling using multi-layer perceptron (MLP) to predict the water level of Nakdong River near "Hahoe Village". To develop the prediction model, error back-propagation (EBP) algorithm was used to train the MLP with water level data near the village and rainfall data at the upper reaches of the village. After training with data in 2012 and 2013, we verified the prediction performance of MLP with untrained data in 2014.