• Title/Summary/Keyword: multi-layered system

Search Result 292, Processing Time 0.029 seconds

Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory

  • Vinyas, M.;Harursampath, D.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.667-684
    • /
    • 2020
  • In this article, the static responses of layered magneto-electro-thermo-elastic (METE) plates in thermal environment have been investigated through FE methods. By using Reddy's third order shear deformation theory (TSDT) in association with the Hamilton's principle, the direct and derived quantities of the coupled system have been obtained. The coupled governing equations of METE plates have been derived through condensation technique. Three layered METE plates composed of piezoelectric and piezomagnetic phases are considered for evaluation. For investigating the correctness and accuracy, the results in this article are validated with previous researches. In addition, a special attention has been paid to evaluate the influence of different electro-magnetic boundary conditions and pyrocoupling on the coupled response of METE plates. Finally, the influence of stacking sequences, magnitude of temperature load and aspect ratio on the coupled static response of METE plates are investigated in detail.

Control of IPMC-based Artificial Muscle for Myoelectric Hand Prosthesis

  • Lee Myoung-Joon;Jung Sung-Hee;Moon Inhyuk;Lee Sukmin;Mun Mu-Seong
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.257-264
    • /
    • 2005
  • This paper proposes an ionic polymer metal composite (IPMC) based artificial muscle to be applicable to the Myoelectric hand prosthesis. The IPMC consists of a thin polymer membrane with metal electrodes plated chemically on both faces, and it is widely applying to the artificial muscle because it is driven by relatively low input voltage. The control commands for the IPMC-based artificial muscle is given by electromyographic (EMG) signals obtained from human forearm. By an intended contraction of the human flexor carpi ulnaris and extensor carpi ulnaris muscles, we investigated the actuation behavior of the IPMC-based artificial muscle. To obtain higher actuation force of the IPMC, the single layered as thick as $800[{\mu}m]$ or multi-layered IPMC of which each layer can be as thick as $178[{\mu}m]$ are prepared. As a result, the bending force was up to the maximum 12[gf] from 1[gf] by actuating the single layered IPMC with $178[{\mu}m]$, but the bending displacement was reduced to 6[mm] from 30[mm]. The experimental results using an implemented IPMC control system show a possibility and a usability of the bio-mimetic artificial muscle.

A Study on the Spreadability Characteristics of Asphalt Concrete Pavement using Dynaflect (DYNAFLECT에 의한 아스팔트 콘크리트 포장도로의 분산도 특성에 관한 연구)

  • Kim, Su-Il;Choe, Jeong-Hun;Yu, Ji-Hyeong
    • Geotechnical Engineering
    • /
    • v.3 no.1
    • /
    • pp.53-64
    • /
    • 1987
  • Dynaflect is known as a very effective equipment for the structural evaluation and rehabilitation of Pavements. It is increasingly used in the design, construction and maintenance of the various pavement structures. In this study, two-layered asphalt concrete pavements with the various moduli and thicknesses are selected as the analytical models. The deflections on the surface corresponding to sensor positions of Dynaflect are analyzed utilizing the multi-layered elastic computer program. From the study of the characteristics of spreadability (SPR), it is found that the SPRs are unique when the moduli ratio of pavements EIIE2 are identical. It is also found that the SPR has a linear relationship with the logarithm of moduli ratio ElIE2 in the range of 1.0 to 50. The regression equation to predict the moduli ratio ElyE2 from the SPR and the pavement taickness h is proposed. A series of charts to estimate the elastic moduli of two-layered asphalt concrete pavement system are also developed.

  • PDF

A Study on the Dynamic Behavior of Underground Tunnels with a Cavity (주변 공동을 고려한 터널의 동적거동에 관한 연구)

  • 김민규;이종우;이종세
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.171-178
    • /
    • 2002
  • A dynamic analysis of a horseshoe_shaped tunnel near to cavity was performed to study the effect of the cavity on the dynamic behavior of the tunnel. In order to obtain the dynamic response of the tunnel embedded in a semi-infinite domain, a hybrid numerical technique was primarily developed. A dynamic fundamental solution in frequency domain for multi-layered half planes was derived and subsequently incorporated in the boundary element method. Coupling of the boundary element method for the far field with the finite element method for the near field is made by imposing compatibility condition of a displacement at the interface. The boundary element method is then coupled with the finite element method, which is utilized to model the near field including the tunnel and the cavity. In order to demonstrate the validity of the proposed technique, dynamic responses of single and multiply-layered semi-infinite structural systems are obtained by using the Kicker waveform and investigated in the limestone layer to find how the being and the location of the cavity affect the dynamic characteristics of the system.

Determination of Member Force Ratios for Self-equilibrium State of Multi-Layered Cable Dome Type Structures (다층 케이블 돔형 구조물의 자기평형을 위한 부재력 비율 결정)

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.75-82
    • /
    • 2013
  • For each cable component in a cable dome structure, pre-tension is needed for stability of whole the structure. The summation of these pre-tension at each joint should be zero to achieve the self equilibrium structure. The first step in cable dome structure analysis is to find the ratio of pre-tension in each member which can produce a stable and structure on self-equilibrium. In this paper, a new method based on the basic principle of closed force polygon for equilibrium system is proposed for the determination of self-equilibrium mode of cable dome structure. A single layer cable dome and two multi layer type domes have been analyzed. The ratios of cable members are determined by the presented method, and check the validation of the results by numerical calculation.

Development of Multi-functional Hotwire Cutting System using EPS-foam (발포 폴리스티렌 폼을 이용한 다기능 열선절단장치 개발)

  • 이상호;김효찬;양동열;박승교;김찬국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1414-1417
    • /
    • 2004
  • A thick-layered RP process, transfer-type variable lamination manufacturing using expandable polystyrene foam (VLMST) has been developed to have the advantageous characteristics such as high building speed, low cost for introduction and maintenance of VLM-ST apparatus, and little staircase surface irregularities of parts. However, VLM-ST has difficulty fabricating an axisymmetric shape and a large-sized freeform shape because of the limited sloping angles and small build size. The objective of this paper is to develop a multi-functional hotwire cutting system using EPS-foam (MHC). MHC employs a four-axis synchronized hotwire cutter with the structure of two XY movable heads and a turntable. In order to examine the applicability of the developed MHC apparatus, an axisymmetric shape, a polyhedral shape and a large-sized freeform shape were fabricated on the apparatus.

  • PDF

Continuous hitting by a flexible link hammer with neural networks generating input pattern

  • Hitaka, Yoshikazu;Izumi, Teruyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.721-724
    • /
    • 1994
  • This paper proposes a continuous hitting by a flexible link hammer. This hammer system is used only the first mode of vibration for a desired hitting. The input of the hammer driver for a continuous hitting is obtained from numerical solutions of two sets of non-linear simultaneous equations which satisfy the hitting conditions. Being too complicated, these numerical calculations are not useful for online processing. Therefore, the multi-layered neural networks are applied to the generation of the input patterns of the hammer driver. The trained network outputs agree well to the numerical solutions.

  • PDF

Characteristics Modeling of Dynamic Systems Using Adaptive Neural Computation (적응 뉴럴 컴퓨팅 방법을 이용한 동적 시스템의 특성 모델링)

  • Kim, Byoung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.309-314
    • /
    • 2007
  • This paper presents an adaptive neural computation algorithm for multi-layered neural networks which are applied to identify the characteristic function of dynamic systems. The main feature of the proposed algorithm is that the initial learning rate for the employed neural network is assigned systematically, and also the assigned learning rate can be adjusted empirically for effective neural leaning. By employing the approach, enhanced modeling of dynamic systems is possible. The effectiveness of this approach is veri tied by simulations.

Development of Scaffold Fabrication System using Multi-axis RP Software Technique (다축 RP 소프트웨어 기술을 이용한 스캐폴드 제조 장비 개발)

  • Park, Jung-Whan;Lee, Jun-Hee;Cho, Hyeon-Uk;Lee, Su-Hee;Park, Su-A;Kim, Wan-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.33-40
    • /
    • 2012
  • The scaffold serves as 3D substrate for the cells adhesion and mechanical support for the newly grown tissue by maintaining the 3D structure for the regeneration of tissue and organ. In this paper, we proposed integrated scaffold fabrication system using multi-axis rapid prototyping (RP) technology. It can fabricate various types of scaffolds: arbitrary sculptured shape, primitive shape, and tube shape scaffolds by layered dispensing biocompatible/ biodegradable polymer strands in designated patterns. In order to fabricate the 3D scaffold, we need to generate the plotting path way for the scaffold fabrication system. We design a data processing program - scaffold plotting software, which can convert the 3D STL file, primitive and tube model images into the NC code for the system. Finally, we fabricated the customized 3D scaffolds with high accuracy using the plotting software and the fabrication system.

A Study on the Restoration of a Low-Resoltuion Iris Image into a High-Resolution One Based on Multiple Multi-Layered Perceptrons (다중 다층 퍼셉트론을 이용한 저해상도 홍채 영상의 고해상도 복원 연구)

  • Shin, Kwang-Yong;Kang, Byung-Jun;Park, Kang-Ryoung;Shin, Jae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.438-456
    • /
    • 2010
  • Iris recognition uses a unique iris pattern of user to identify person. In order to enhance the performance of iris recognition, it is reported that the diameter of iris region should be greater than 200 pixels in the captured iris image. So, the previous iris system used zoom lens camera, which can increase the size and cost of system. To overcome these problems, we propose a new method of enhancing the accuracy of iris recognition on low-resolution iris images which are captured without a zoom lens. This research is novel in the following two ways compared to previous works. First, this research is the first one to analyze the performance degradation of iris recognition according to the decrease of the image resolution by excluding other factors such as image blurring and the occlusion of eyelid and eyelash. Second, in order to restore a high-resolution iris image from single low-resolution one, we propose a new method based on multiple multi-layered perceptrons (MLPs) which are trained according to the edge direction of iris patterns. From that, the accuracy of iris recognition with the restored images was much enhanced. Experimental results showed that when the iris images down-sampled by 6% compared to the original image were restored into the high resolution ones by using the proposed method, the EER of iris recognition was reduced as much as 0.133% (1.485% - 1.352%) in comparison with that by using bi-linear interpolation