• Title/Summary/Keyword: multi-layer cover design

Search Result 9, Processing Time 0.031 seconds

Construction and Operational Experiences of Engineered Barrier Test Facility for Near Surface Disposal of LILW (중.저준위 방사성폐기물의 천층처분을 위한 인공방벽 실증시험시설의 건설 및 운전 경험)

  • Jin-Beak Park;Se-Moon Park;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.1
    • /
    • pp.23-34
    • /
    • 2004
  • To validate the previous conceptual design of cover system, construction of the engineered barrier test facility is completed and the performance tests of the disposal cover system are conducted. The disposal test facility is composed of the multi-purpose working space, the six test cells and the disposal information space for the PR center. The dedicated detection system measures the water content, the temperature, the matric potential of each cover layer and the accumulated water volume of lateral drainage. Short-term experiments on the disposal cover layer using the artificial rainfall system are implemented. The sand drainage layer shows the satisfactory performance as intended in the design stage. The artificial rainfall does not affect the temperature of cover layers. It is investigated that high water infiltration of the artificial rainfall changes the matric potential in each cover layer. This facility is expected to increase the public information about the national radioactive waste disposal program and the effort for the safety of the planned disposal facility.

  • PDF

Water Balance Evaluation of Final Closure Cover for Near- surface Radioactive Wastes Disposal Facility

  • Keunmoo Chang;Park, Joo-Wan;Yoon, Jeong-Hyoun;Park, Heui-Joo;Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.274-282
    • /
    • 2000
  • The simulation of water balance was conducted for suggested four alternative multi-layer cover design of near-surface radioactive waste disposal facility under domestic climate condition. The analysis was also conducted for the most favorable one out of four alternative cover design under conservative scenarios. Until 100 years after closure of disposal vault, the infiltration flux for the most favorable cover design was negligible even under doubling of the ambient precipitation condition. When the degradation of asphalt and geomembrane after 100 years of closure was considered, the infiltration flux significantly increased almost to the design criteria of cover system in I' Aube disposal facility. And it was found that the hydraulic conductivity of bentonite/sand as a bottom barrier should be no greater than 1$\times$10$^{-7}$ cm/sec recommended by U.S. EPA.

  • PDF

Suggestions for Multi-Layer Planting Model in Seoul Area Based on a Cluster Analysis and Interspecific Association (식생 군집분석과 종간친화력 분석을 통한 서울형 다층구조 식재모델 제안)

  • Kim, Min-Kyung;Sim, Woo-Kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.106-127
    • /
    • 2010
  • Although multi-layer planting methods are more widely used as a method for clustered planting and environmental programs such as plant remediation, difficulties have been faced in applying those to planting design. This study develops a basic planting model that can be applied to multi-layer planting in basis on an analysis of forest structures in the Seoul area. An optimal number of clusters was determined through the ISA (Indicator Species Analysis), and 7 basic clusters were found through a cluster analysis by using PC ORD 4.0 software specifically developed for ecological analysis. The 7 basic clusters include the following communities: the Quercus acutissima Community, Sorbus alnifolia-Quercus mongolica Community, Pinus rigida-Pinus densifiora Community, Rododendron mucronulatum var. mucronulatum-Quercus mongolica Community, Juniperus rigida-Quercus mongolica Community, Rododendron mucronulatum var. mucronulatum-Pinus densiflora Community, and Rododendron sclippenbachii-Quercus mongolica Community. The study also selected 57 species with at least a 10% frequency among the plant species existing in the Seoul area and suggested both a companion species and available similar alternative species by conducting an additional interspecific association analysis. This study may help to enhance usefulness of the model in architectural planting design. In addition, the two results named above were synthesized to develop a multi-layer planting model that can be utilized in landscape planting design by selecting similar alternative species through the interspecific association analysis, which includes 7 clusters of natural plants. The multi-layer planting model can be widely applied to design planting because the model has an average target cover range based on the average value of a transformed likelihood.

Warpage of Flexible OLED under High Temperature Reliability Test (고온 신뢰성 시험에서 발생된 플렉서블 OLED의 휨 변형)

  • Lee, Mi-Kyoung;Suh, Il-Woong;Jung, Hoon-Sun;Lee, Jung-Hoon;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • Flexible organic light-emitting diode (OLED) devices consist of multi-stacked thin films or layers comprising organic and inorganic materials. Due to thermal coefficient mismatch of the multi-layer films, warpage of the flexible OLED is generated during high temperature process of each layer. This warpage will create the critical issues for next production process, consequently lowering the production yield and reliability of the flexible OLED. In this study, we investigate the warpage behavior of the flexible OLED for each bonding process step of the multi-layer films using the experimental and numerical analysis. It is found that the polarizer film and barrier film show significant impact on warpage of flexible OLED, while the impact of the OCA film on warpage is negligible. The material that has the most dominant impact on the warpage is a plastic cover. In order to minimize the warpage of the flexible OLED, we estimate the optimal material properties of the plastic cover using design of experiment. It is found that the warpage of the flexible OLED is reduced to less than 1 mm using a cover plastic of optimized properties which are the elastic modulus of 4.2 GPa and thermal expansion coefficient of $20ppm/^{\circ}C$.

Classification of Remote Sensing Data using Random Selection of Training Data and Multiple Classifiers (훈련 자료의 임의 선택과 다중 분류자를 이용한 원격탐사 자료의 분류)

  • Park, No-Wook;Yoo, Hee Young;Kim, Yihyun;Hong, Suk-Young
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.489-499
    • /
    • 2012
  • In this paper, a classifier ensemble framework for remote sensing data classification is presented that combines classification results generated from both different training sets and different classifiers. A core part of the presented framework is to increase a diversity between classification results by using both different training sets and classifiers to improve classification accuracy. First, different training sets that have different sampling densities are generated and used as inputs for supervised classification using different classifiers that show different discrimination capabilities. Then several preliminary classification results are combined via a majority voting scheme to generate a final classification result. A case study of land-cover classification using multi-temporal ENVISAT ASAR data sets is carried out to illustrate the potential of the presented classification framework. In the case study, nine classification results were combined that were generated by using three different training sets and three different classifiers including maximum likelihood classifier, multi-layer perceptron classifier, and support vector machine. The case study results showed that complementary information on the discrimination of land-cover classes of interest would be extracted within the proposed framework and the best classification accuracy was obtained. When comparing different combinations, to combine any classification results where the diversity of the classifiers is not great didn't show an improvement of classification accuracy. Thus, it is recommended to ensure the greater diversity between classifiers in the design of multiple classifier systems.

Design and Growth of InAs Multi-Quantum Dots and InGaAs Multi-Quantum Wells for Tandem Solar Cell (텐덤형 태양전지를 위한 InAs 다중 양자점과 InGaAs 다중 양자우물에 관한 연구)

  • Cho, Joong-Seok;Kim, Sang-Hyo;HwangBoe, Sue-Jeong;Janng, Jae-Ho;Choi, Hyon-Kwang;Jeon, Min-Hyon
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.352-357
    • /
    • 2009
  • The InAs multi-quantum dots (MQDs) solar cell and InGaAs multi-quantum wells (MQWs) solar cell to cover 1.1 eV and 1.3 eV were designed by 1D poisson, respectively. The MQDs and MQWs of 5, 10, 15 layers were grown by molecular beam epitaxy. The photo luminescence results showed that the 5 period stacked MQDs have the highest intensity at around 1.1 eV with 57.6 meV full width at half maximum (FWHM). Also we can observe 10 period stacked MQWs peak position which has highest intensity at 1.31 eV with 12.37 meV FWHM. The density and size of QDs were observed by reflection high energy electron diffraction pattern and atomic force microscope. Futhermore, AlGaAs/GaAs sandwiched tunnel junctions were modified according to the width of GaAs layer on p-type GaAs substrates. The structures with GaAs width of 30 nm and 50 nm have backward diode characteristics. In contrast, tunnel diode characteristics were observed in the 20 nm of that of sample.

Reliability Analysis for Fracture of Concrete Armour Units (콘크리트 피복재의 단면파괴에 대한 신뢰성 해석)

  • 이철응
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.86-96
    • /
    • 2003
  • A fracture or breakage of the concrete armor units in the primary cover layer of breakwaters is studied by using the reliability analysis which may be defined as the structural stability. The reliability function can be derived as a function of the angle of rotation that represents the rocking of armor units quantitatively. The relative influences of all of random variables related to the material and geometric properties on the fracture of armor units is analyzed in detail. In addition, the probability of failure for the fracture of individual armor unit can be evaluated as a function of the incident wave height. Finally, Bernoulli random process and the allowable fracture ratio may be introduced together in this paper, by which the probability of failure of a breakwater due to the fracture of armer units can be obtained straightforwardly. It is found that the probability of failure of a breakwater due to the fracture of armor units may be varied with the several allowable fracture ratios. Therefore, it should be necessary to consider the structural stability as well as the hydraulic stability for the design of breakwaters with multi-leg slender concrete armor units of large size under wave action in deep water.

Discussion of Preliminary Design Review for MIRIS, the Main Payload of STSAT-3

  • Han, Won-Yong;Jin, Ho;Park, Jang-Hyun;Nam, Uk-Won;Yuk, In-Soo;Lee, Sung-Ho;Park, Young-Sik;Park, Sung-Jun;Lee, Dae-Hee;Ree, Chang-H.;Jeong, Woong-Seob;Moon, Bong-Kon;Cha, Sang-Mok;Cho, Seoung-Hyun;Rhee, Seung-Woo;Park, Jong-Oh;Lee, Seung-Heon;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.27.1-27.1
    • /
    • 2008
  • KASI (Korea Astronomy and Space Science Institute) is developing a compact wide-field survey space telescope system, MIRIS (The Multi-purpose IR Imaging System) to be launched in 2010 as the main payload of the Korea Science and Technology Satellite 3. Through recent System Design Review (SDR) and Preliminary Design Review (PDR), most of the system design concept was reviewed and confirmed. The near IR imaging system adopted short F/2 optics for wide field low resolution observation at wavelength band 0.9~2.0 um minimizing the effect of attitude control system. The mechanical system is composed of a cover, baffle, optics, and detector system using a $256\times256$ Teledyne PICNIC FPA providing a $3.67\times3.67$ degree field of view with a pixel scale of 51.6 arcsec. We designed a support system to minimize heat transfer with Muti-Layer Insulation. The electronics of the MIRIS system is composed of 7 boards including DSP, control, SCIF. Particular attention is being paid to develop mission operation scenario for space observation to minimize IR background radiation from the Earth and Sun. The scientific purpose of MIRIS is to survey the Galactic plane in the emission line of Pa$\alpha$ ($1.88{\mu}m$) and to detect the cosmic infrared background (CIB) radiation. The CIB is being suspected to be originated from the first generation stars of the Universe and we will test this hypothesis by comparing the fluctuations in I (0.9~1.2 um) and H (1.2~2.0 um) bands to search the red shifted Lyman cutoff signature.

  • PDF

Development of Greenhouse Cooling and Heating Load Calculation Program Based on Mobile (모바일 기반 온실 냉난방 부하 산정 프로그램 개발)

  • Moon, Jong Pil;Bang, Ji Woong;Hwang, Jeongsu;Jang, Jae Kyung;Yun, Sung Wook
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.419-428
    • /
    • 2021
  • In order to develope a mobile-based greenhouse energy calculation program, firstly, the overall thermal transmittance of 10 types of major covers and 16 types of insulation materials were measured. In addition, to estimate the overall thermal transmittance when the cover and insulation materials were installed in double or triple layers, 24 combinations of double installations and 59 combinations of triple installations were measured using the hotbox. Also, the overall thermal transmittance value for a single material and the thermal resistance value were used to calculate the overall thermal transmittance value at the time of multi-layer installation of covering and insulating materials, and the linear regression equation was derived to correct the error with the measured values. As a result of developing the model for estimating thermal transmittance when installing multiple layers of coverings and insulating materials based on the value of overall thermal transmittance of a single-material, the model evaluation index was 0.90 (good when it is 0.5 or more), indicating that the estimated value was very close to the actual value. In addition, as a result of the on-site test, it was evaluated that the estimated heat saving rate was smaller than the actual value with a relative error of 2%. Based on these results, a mobile-based greenhouse energy calculation program was developed that was implemented as an HTML5 standard web-based mobile web application and was designed to work with various mobile device and PC browsers with N-Screen support. It had functions to provides the overall thermal transmittance(heating load coefficient) for each combination of greenhouse coverings and thermal insulation materials and to evaluate the energy consumption during a specific period of the target greenhouse. It was estimated that an energy-saving greenhouse design would be possible with the optimal selection of coverings and insulation materials according to the region and shape of the greenhouse.