• 제목/요약/키워드: multi-junction cells

검색결과 34건 처리시간 0.03초

Present Status and Prospects of Thin Film Silicon Solar Cells

  • Iftiquar, Sk Md;Park, Jinjoo;Shin, Jonghoon;Jung, Junhee;Bong, Sungjae;Dao, Vinh Ai;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제2권2호
    • /
    • pp.41-47
    • /
    • 2014
  • Extensive investigation on silicon based thin film reveals a wide range of film characteristics, from low optical gap to high optical gap, from amorphous to micro-crystalline silicon etc. Fabrication of single junction, tandem and triple junction solar cell with suitable materials, indicate that fabrication of solar cell of a relatively moderate efficiency is possible with a better light induced stability. Due to these investigations, various competing materials like wide band gap silicon carbide and silicon oxide, low band gap micro-crystalline silicon and silicon germanium etc were also prepared and applied to the solar cells. Such a multi-junction solar cell can be a technologically promising photo-voltaic device, as the external quantum efficiency of such a cell covers a wider spectral range.

마그네트론 코스퍼터링법으로 형성한 SiO2/Si 양자점 초격자 구조의 특성 (Characteristics of SiO2/Si Quantum Dots Super Lattice Structure Prepared by Magnetron Co-Sputtering Method)

  • 박영빈;김신호;하린;이현주;이정철;배종성;김양도
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.586-591
    • /
    • 2010
  • Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources. The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use of materials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorption of incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap. Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the $1^{st}$ and $2^{nd}$ generation solar cells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using an Si quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an $SiO_x$ matrix system was investigated and analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QD SLS) were prepared by alternating deposition of Si rich oxide (SRO; $SiO_x$ (x = 0.8, 1.12)) and $SiO_2$ layers using RF magnetron co-sputtering and subsequent annealing at temperatures between 800 and $1,100^{\circ}C$ under nitrogen ambient. Annealing temperatures and times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-ray photoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at $1,100^{\circ}C$ for one hour. Transmission electron microscopy (TEM) images clearly showed SRO/$SiO_2$ SLS and Si QDs formation in each 4, 6, and 8 nm SRO layer after annealing at $1,100^{\circ}C$ for two hours. The systematic investigation of precipitation behavior of Si QDs in $SiO_2$ matrices is presented.

Spectroscopic Ellipsometer를 이용한 a-Si:H/c-Si 이종접합 태양전지 박막 분석 (A Novel Analysis Of Amorphous/Crystalline Silicon Heterojunction Solar Cells Using Spectroscopic Ellipsometer)

  • 지광선;어영주;김범성;이헌민;이돈희
    • 신재생에너지
    • /
    • 제4권2호
    • /
    • pp.68-73
    • /
    • 2008
  • It is very important that constitution of good hetero-junction interface with a high quality amorphous silicon thin films on very cleaned c-Si wafer for making high efficiency hetero-junction solar cells. For achieving the high efficiency solar cells, the inspection and management of c-Si wafer surface conditions are essential subjects. In this experiment, we analyzed the c-Si wafer surface very sensitively using Spectroscopic Ellipsometer for < ${\varepsilon}2$ > and u-PCD for effective carrier life time, so we accomplished < ${\varepsilon}2$ > value 43.02 at 4.25eV by optimizing the cleaning process which is representative of c-Si wafer surface conditions very well. We carried out that the deposition of high quality hydrogenated silicon amorphous thin films by RF-PECVD systems having high density and low crystallinity which are results of effective medium approximation modeling and fitting using spectroscopic ellipsometer. We reached the cell efficiency 12.67% and 14.30% on flat and textured CZ c-Si wafer each under AM1.5G irradiation, adopting the optimized cleaning and deposition conditions that we made. As a result, we confirmed that spectroscopic ellipsometry is very useful analyzing methode for hetero-junction solar cells which need to very thin and high quality multi layer structure.

  • PDF

SOG렌즈를 적용한 집광형 태양전지모듈 특성 (A Characteristics of the Applied SOG Lens for the CPV Module)

  • 정병호;이강연;박주훈;문은아;이상현;김대곤
    • 전기학회논문지P
    • /
    • 제61권2호
    • /
    • pp.97-102
    • /
    • 2012
  • CPV system in the desert areas or areas near the equator, as is suitable for high-temperature region. As compared to silicon solar cells, CPV system have a high proportion of a BOS (balance of system). Solar cells because of its low proportion when designing a module technology is applied in a variety of ways. Applied to the CPV system is classified into two kinds of optical technology. One of those using fresnel lens uses refraction of light energy. The other is a mirror reflection of the structure using sprays. Both of these two ways to condense the sun to collect solar cell is a form of light. And goals by using a small solar cell materials is to produce more energy. In this paper, suitable for a domestic environment, with the aim CPV Manufacturing Technology, built on a variety of modular process technology to the development of a prototype performance analysis was carried out. In particular, silicone coated on the glass by the method of implementation of the Fresnel lens SOG(Silicon on glass) by applying the lens to absorb the solar spectrum was broad. In addition to, for the analyze to characteristics of the CPV module, developed CPV module performance and generating characteristics studied. These related technology through research and development of high-performance multi-junction solar cells, modules, development of concentrating solar power systems to facilitate the growth of the market is considered to be.

Computer-simulation with Different Types of Bandgap Profiling for Amorphous Silicon Germanium Thin Films Solar Cells

  • 조재현;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.320-320
    • /
    • 2014
  • Amorphous silicon alloy (a-Si) solar cells and modules have been receiving a great deal of attention as a low-cost alternate energy source for large-scale terrestrial applications. Key to the achievement of high-efficiency solar cells using the multi-junction approach is the development of high quality, low band-gap materials which can capture the low-energy photons of the solar spectrum. Several cell designs have been reported in the past where grading or buffer layers have been incorporated at the junction interface to reduce carrier recombination near the junction. We have investigated profiling the composition of the a-SiGe alloy throughout the bulk of the intrinsic material so as to have a built-in electrical field in a substantial portion of the intrinsic material. As a result, the band gap mismatch between a-Si:H and $a-Si_{1-x}Ge_x:H$ creates a barrier for carrier transport. Previous reports have proposed a graded band gap structure in the absorber layer not only effectively increases the short wavelength absorption near the p/i interface, but also enhances the hole transport near the i-n interface. Here, we modulated the GeH4 flow rate to control the band gap to be graded from 1.75 eV (a-Si:H) to 1.55 eV ($a-Si_{1-x}Ge_x:H$). The band structure in the absorber layer thus became like a U-shape in which the lowest band gap was located in the middle of the i-layer. Incorporation of this structure in the middle and top cell of the triple-cell configuration is expected to increase the conversion efficiency further.

  • PDF

다중 적층형 박막 실리콘 태양 전지의 터널 접합 특성 연구 (The Study of the Tunnel Recombination Junction Properties in Multi-Junction Thin Film Silicon Solar Cells)

  • 황선태;심현자;정진원;안세원;이헌민
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.62.2-62.2
    • /
    • 2010
  • 박막 실리콘 태양 전지는 저가격화 및 대량생산, 대면적화에 유리하다는 장점을 가지고 있다. 단점으로 지적되는 낮은 효율을 극복하기 위해 광흡수층의 밴드갭이 서로 다른 두 개 이상의 박막을 적층하여, 넓은 파장 대역의 빛을 효과적으로 흡수함으로써 광변환 효율을 올리기 위한 많은 연구가 이루어지고 있다. 서로 다른 밴드갭의 광흡수층을 가진 p-i-n 구조를 다중 적층하여 고효율의 태양 전지를 제작하기 위해서는 n-도핑층과, p-도핑층 간에 전자와 정공이 빠르게 재결합할 수 있는 터널 접합(Tunnel Recombination Junction)의 형성이 필수적이며, 이때 광손실이 최소화되도록 해야한다. 만약 터널 접합이 적절하게 형성되지 않으면 결합되지 않은 전자와 정공이 도핑층 사이에 쌓이게 되고, 도핑층 사이의 저항 증가로 태양 전지의 광변환 효율은 크게 하락한다. 이번 연구에서는 터널 접합이 잘 이루어지게 하기 위한 n-도핑층 및 p-도핑층 박막의 특성과, 터널 접합의 특성에 따른 적층형 태양 전지의 광효율 변화를 확인하였다. 광흡수층 및 도핑층은 TCO($SnO_2:F$, Asahi) 유리 기판 위에 PECVD를 사용하여 p-i-n 구조로 RF Power 조건에서 증착되었고, ${\mu}c$-Si 광흡수층의 경우에는 VHF Power 조건에서 증착되었다. 광흡수층이 a-Si/${\mu}c$-Si의 구조를 가지는 이중 접합 태양 전지에서 ${\mu}c$-Si n-도핑층/${\mu}c$-Si p-도핑층 사이의 터널 접합 실험 결과 n-도핑층 및 p-도핑층의 결정화도와 도핑 농도를 조절하여 터널 접합의 저항을 최소화했고, 터널 접합 특성이 이중 접합 셀의 광효율 특성과 유사한 경향을 보임을 확인하였다. 광흡수층이 a-Si/a-SiGe/${\mu}c$-Si의 구조를 가지는 삼중 접합 태양 전지 실험의 경우 a-Si과 a-SiGe 광흡수층 사이에 ${\mu}c$-Si n-도핑층/${\mu}c$-Si p-도핑층/a-SiC p-도핑층의 구조를 적용하여 터널 접합을 형성하였으며, ${\mu}c$-Si p-도핑층의 두께 및 박막 특성을 개선하여 광손실이 최소화된 터널 접합을 구현하였고, 삼중 접합 태양 전지에 적용되었다.

  • PDF

A study of the light trapping mechanism in periodically honeycomb texture-etched substrate for thin film silicon solar cells

  • Kim, Yongjun;Shin, Munghun;Park, Hyeongsik;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.147.2-148
    • /
    • 2016
  • Light management technology is very important for thin film solar cells, which can reduce optical reflection from the surface of thin film solar cells or enhance optical path, increasing the absorption of the incident solar light. Using proper light trapping structures in hydrogenated amorphous silicon (a-Si:H) solar cells, the thickness of absorber layers can be reduced. Instead, the internal electric field in the absorber can be strengthened, which helps to collect photon generated carriers very effectively and to reduce light-induced loss under long-term light exposure. In this work, we introduced a chemical etching technology to make honey-comb textures on glass substrates and analyzed the optical properties for the textured surface such as transmission, reflection and scattering effects. Using ray optics and finite difference time domain method (FDTD) we represented the behaviors of light waves near the etched surfaces of the glass substrates and discussed to obtain haze parameters for the different honey-comb structures. The simulation results showed that high haze values were maintained up to the long wavelength range over 700 nm, and with the proper design of the honey-comb structure, reflection or transmission of the glass substrates can be enhanced, which will be very useful for the multi-junction (tandem or triple junction) thin film a-Si:H solar cells.

  • PDF

DSSC광전극의 나노구조 제어 및 투명전극 소재 개발

  • 장현석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.28-28
    • /
    • 2010
  • Photoelectrochemical solar cells such as dye-sensitized cells (DSSCs), which exhibit high performance and are cost-effective, provide an alternative to conventional p-n junction photovoltaic devices. However, the efficiency of such cells plateaus at 11-12%, in contrast to their theoretical value of 33%. Improvements in efficiency can only occur through a fundamental understanding of the underlying physics, materials, and device designs of DSSCs. A photoelectrode consisting of semiconducting oxide nanoparticles and a transparent conducting oxide electrode (TCO) is a key component of DSSC and design of photoelectrode materials is one of promising strategies to improving energy conversion efficiency. We introduce monodisperesed $TiO_2$ nanoparticles prepared by forced hydrolysis method and their superiority as photoelectrode materials was characterized with aids of optical and electrochemical analysis. Multi-layered TCO materials are also introduced and their feasibility for use as photoelectrodes is discussed in terms of optical absorption and charge collecting properties.

  • PDF

Spin-On Dopants를 이용한 결정질 실리콘 태양전지의 n+ 에미터 형성에 관한 연구 (Investigation of n+ Emitter Formation Using Spin-On Dopants for Crystalline Si Solar Cells)

  • 조경연;이지훈;최준영;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.68-69
    • /
    • 2007
  • To make cost-effective solar cells, We have to use low cost material or make short process time or high temperature process. In solar cells, formation of emitter is basic and important technique according to build-up P-N junction. Diffusion process using spin-on dopants has all of this advantage. In this paper, We investigated n+ emitter formation spin-on dopants to apply crystalline silicon solar cells. We known variation of sheet resistance according to variation of temperature and single-crystalline and multi-crystalline silicon wafer using Honeywell P-8545 phosphorus spin-on dopants. We obtain uniformity of sheet resistance within 3~5% changing RPM of spin coater.

  • PDF

Regulation of Early Steps of Chondrogenesis in the Developing Limb

  • Kang, Shin-Sung
    • Animal cells and systems
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2008
  • In the developing limb, chondrogenesis is an important prerequisite for the formation of cartilage whose template is required for bone formation. Chondrogenesis is a tightly regulated multi-step process, including mesenchymal cell recruitment/migration, prechondrogenic condensation of the mesenchymal cells, commitment to the chondrogenic lineage, and differentiation into chondrocytes. This process is controlled exquisitely by cellular interactions with the surrounding matrix and regulating factors that initiate or suppress cellular signaling pathways and transcription of specific genes in a temporal-spatial manner. Understanding the cellular and molecular mechanisms of chondrogenesis is important not only in the context of establishing basic principle of developmental biology but also in providing research direction toward preventive and/or regenerative medicine. Here, I will overview the current understanding of cellular and molecular mechanisms contributing to prechondrogenic condensation processes, the crucial steps for chondrogenesis, focusing on cell-cell and cell-matrix interactions.