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Abstract: In the developing limb, chondrogenesis is an
important prerequisite for the formation of cartilage whose
template is required for bone formation. Chondrogenesis is
a tightly regulated multi-step process, including mesenchymal
cell recruitment/migration, prechondrogenic condensation of
the mesenchymal cells, commitment to the chondrogenic
lineage, and differentiation into chondrocytes. This process
is controlled exquisitely by cellular interactions with the
surrounding matrix and regulating factors that initiate or
suppress cellular signaling pathways and transcription of
specific genes in a temporal-spatial manner. Understanding
the cellular and molecular mechanisms of chondrogenesis
is important not only in the context of establishing basic
principle of developmental biology but also in providing
research direction toward preventive and/or regenerative
medicine. Here, | will overview the current understanding of
cellular and molecular mechanisms contributing to
prechondrogenic condensation processes, the crucial steps
for chondrogenesis, focusing on cell-cell and cell-matrix
interactions.
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The body plan is established in the early embryo by precise
coordination of cell migration, proliferation and differentiation.
The early embryonic limb bud possesses two signaling
centers, the apical ectodermal ridge (AER) and the zone of
polarizing activity (ZPA), which produce signals responsible
for directing the proximal-distal outgrowth and anterior-
posterior patterning of the limb skeletal elements, respectively
(DeLise et al., 2000; Olsen et al., 2000). When the
mesenchymal cells in the central core of the limb bud
become located outside of the range of the AER signaling,
they launch chondrogenesis into highly complicated
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processes of endochondral ossification (Tuan, 2004; Goldring
et al., 2006; Pacifici et al., 2006). Cartilage formation is a
tightly regulated multi-step process, including mesenchymal
cell recruitment/migration, precartilage condensation of the
mesenchymal cells, commitment to the chondrogenic
lineage, and differentiation into chondrocytes (Johnson and
Tabin, 1997; Sander and Adler, 1999; Del.ise et al., 2000;
Knudson and Knudson, 2001). The differentiated chondrocytes
can then proliferate and undergo the complex process of
hypertrophic maturation, followed by programmed cell
death and replacement by bone (Fig. 1).

Chondrogenesis is a prerequisite event for cartilage
formation, an earliest overt morphogenetic event of
endochondral ossification, which begins with a process of
prechondrogenic condensation (Olsen et al., 2000; Tickle
and Munsterberg, 2001). Previous studies have demonstrated
that high level of cell density in the chondrogenic regions is
correlated with the extent of cell condensation (Ede and
Shamslahidjani, 1983; Newman et al., 1985). Therefore,
prechondrogenic condensation could be dependent on
mitotic activity and the migration of cells toward a center at
the sites where the cartilaginous templates of the
endochondral bones will develop directly from the cells
within the condensations (Mariani and Martin, 2003; Shum
et al., 2003). During condensation, intimate cell-cell and
cell-matrix interactions occur to trigger chondrogenesis.
However, the exact mechanism has yet to be elucidated.
This article will summarize the current understanding of
cellular and molecular events contributing to condensation
processes focusing on cell-cell and cell-matrix interactions.

CELL-CELL INTERACTIONS

Prechondrogenic condensation is initiated by active cell
movement that causes an increase in chondroprogenitor
mesenchymal cell packing density in the core of the limb
bud (fwasaki et al., 1993; Seghatoleslami and Tuan, 2002).
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This process is associated with an increase in cell-cell
contacts and interaction through cell-cell adhesion molecules
and gap junctions accompanied by one or more signal
transduction pathways.

Cell adhesion molecules

Adhesion of cells to each other provides important
information and determines cellular responses (Leckband
and Prakasam, 2006). The cell adhesion molecules known
to facilitate mesenchymal cell-cell contacts include neural
cadherin (N-cadherin), a Ca**-dependent large transmembrane
glycoprotein, and neural cell adhesion molecule (N-CAM),
a Ca**-independent membrane glycoprotein composed of
the large immunoglobulin supergene family. Both molecules
have been demonstrated, in vivo and in vitro, to be
associated with initiation and maintenance of condensation,
respectively, and perturbation of these molecules results in
alterations in chondrogenesis (Widelitz et al., 1993; Obetlender
and Tuan 1994; Fang and Hall, 1995; DeLise and Tuan,
2002; Tuan, 2003). In fact, experiments involving plasmid
and retroviral vector-mediated misexpression of wild-type
N-cadherin or the dominant negative N-terminal deletion
constructs in micromass cultures of primary chick limb
mesenchymal cells have confirmed that transient misexpression
of wild-type N-cadherin during the early time of limb
mesenchyme micromass culture, corresponding to the time
of endogenous N-cadherin expression, enhanced cellular
condensation (Oberlender and Tuan 1994; DeLise and
Tuan, 2002). On the other hand, expression of the deletion
mutant form of N-cadherin, which lacks either the extracellular
homotypic interaction domains or the intracellular -catenin
binding site, resulted in decreased cellular condensation
and subsequently reduction of chondrogenesis (Tuan,
2003). Widelitz et al. (1993) have reported that anti-N-
CAM antibody-treated chick mesenchymal cell cultures
show decreased cell aggregation resulting in reduction of
cell condensation and chondrogenesis. On the other hand,
overexpression of N-CAM in micromass cultures results in
enhanced cell aggregation followed by differentiation into
cartilage nodules. These findings indicate that N-cadherin
and N-CAM are required in a time- and quantity-specific
manner for normal cellular condensation and chondrogenesis
to occur and that those temporally inappropriate cell-cell
interaction activities are inhibitory to chondrogenic
differentiation, possibly because of inappropriate timing of
signaling events.

Gap junctions

Gap junctions, which are generally believed to facilitate
cell-to-cell diffusion of hydrophilic molecules having a
molecular mass of less than 1 kD, such as cAMP, Ca®", IP;,
and ATP (Kumar and Gilula 1996), are present in many
developing tissues and play roles in many processes,

including signal transmission, cell proliferation, differentiation,
apoptosis, and tissue homeostasis (Simon and Goodenough,
1998; Xu et al., 2001). Gap junctions are formed by
members of a family of sequentially and structurally related
proteins known as connexins. Approximately 20 connexins
have been identified and cloned from various tissues and
cells (Eiberger et al., 2001; Willecke et al., 2002; Saez et
al., 2003). Six monomers of connexins consisting of four
conserved membrane spanning domains and two extracellular
loop domains are joined head-to-head across extracellular
“gap” between two adjacent cells to form intercellular
channels (Sosinsky and Nicholson, 2005; Yeager and
Harris, 2007).

In the limb buds of the mouse and chick, gap junctions
are present predominantly in the AER (Fallon and Kelley,
1977; Makarenkova et al.,, 1997; Meyer et al., 1997). One
of the major gap junction proteins in chick and mouse
embryonic limb is a-1 connexin or connexin43. During the
limb development, connexin43 transcript is present at high
levels in the central condensation of mesenchymal cells, but
as differentiation proceeds, connexin43 transcript becomes
restricted to the edge of the developing cartilaginous core,
the site of the future perichondrium (Dealy et al., 1994;
Green et al., 1994). A recent report has demonstrated that
gap junction-mediated intercellular communication prevents
spontaneous apoptosis (Yasui et al., 2000). This protective
effect has also been described in chick leg bud mesenchymal
cells, in which the blockade of gap junction-mediated
intercellular communication by knockdown of connexin43
inhibited condensation of chondrogenic progenitor cells
that results from increased apoptotic cell death through
down-regulation of integrin 4 (Jin et al., 2008). Contrary
to the roles for gap junction in cell survival signaling
cascades, several researchers have suggested that these
communicative structures might be implicated in cell death
as well. In several experimental models, transfection with
connexin genes results in induction of apoptotic cell death
(Huang et al., 2001; Muramatsu et al., 2002; Kalvelyte et
al., 2003). Moreover, communication via gap junctions
frequently underlies the propagation of cell death between a
dying cell and its healthy neighbor in ischemia-related cell
injury, such as in the case of cerebral infarction (Lin et al.,
1998; Contreras et al., 2004; Nakase et al., 2004). The
spread of cell death through gap junctions and the “Good
Samaritan” effect could reflect the two sides of a coin. The
role of gap junctional communication in spreading/preventing
cell death has been recently reviewed (Krysko et al., 2005).

CELL-MATRIX INTERACTIONS
Cells within the chondrogenic condensations express high

levels of extracellular matrix (ECM) components such as
fibronectin, tenascin, syndecan and cartilage oligomeric
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Fig. 1. The multistep process of endochondral ossification in the developing limb bud. The different stages are presented schematically, showing
the temporal patterns of regulatory factors involved in each stage. Chondrogenesis in the micromass cultures was detected by PNA staining of

condensing cells and Alcian blue staining of cartitage nodules.

proteins as well as cell surface adhesion molecules
(Aulthouse and Solursh, 1987; Gould et al., 1995; Maleski
and Knudson, 1996; Tavella et al., 1997). The temporal and
cooperative functions of these molecules mediate the
requisite cell-matrix interactions that initiate the condensation
event. This necessary step is mimicked in vitro by
chondrogenesis of mesenchymal cells, where high cell
density results in the formation of three-dimensional
spheroid structures that are chondrocytes in phenotype and
are associated with synthesis and deposition of ECM
components (Fig. 1). Cell-matrix interactions are mediated
via transmembrane receptors including integrins and
hyaluronal receptor, CD44 (Yu et al., 1991; Knudson, 2003;
Takahashi et al., 2003; Onodera et al., 2005). Members of
each receptor class, through interactions with their principal
ligands, provide changes in the ECM environment and
these changes may elicit matrix remodeling or cytoskeletal
reorganization (Filipenko et al., 2005; Wood et al., 2007;
Lock et al., 2008). The molecular mechanisms of these
interactions are not fully understood, but it is clear that
communication between neighboring cells through adhesion
and ECM molecules during condensation step is critical in
establishing both temporal and spatial regulation of
chondrogenic differentiation in the developing limb (DeLise
et al., 2000; Djouad et al., 2007; Wu et al., 2007).

Extracellula matrix (ECM)

Fibronectin plays a critical role in aggregation of
mesenchymal cells to be recruited into condensations. Both
in vitro and in ovo experiments of the chick limb have
shown that a functional splice variant of fibronectin (FN) is

highly expressed just prior to condensation, and inhibition
of the FN function results in down-regulation of condensation
(Frenz et al., 1989; Downie and Newman 1995; Gehris et
al., 1997, White et al., 2003). It has been reported that
inhibition of integrin B1 binding to FN impairs activation of
focal adhesion kinase (FAK) and prechondrogenic
aggregation, and subsequently blocks chondrogenesis
(Bang et al., 2000). Fibronectin also acts to activate the
expression of N-CAM during cellular condensation, which
is down-regulated by binding of syndecan, thereby setting
the condensation boundaries (Gould et al 1995; Chimal-
Monroy and Diaz de L, 1999). Mesenchymal condensation
also requires interactions with tenascin and cartilage
oligomeric proteins for chondrogenic differentiation via
signaling through FAK and paxillins (Gehris et al., 1997,
DelLise et al., 2000; Hall and Miyake, 2000).

Changes in cell shape from fibroblast-like to round or
polygonal morphologies and production of ECMs follows
prechondrogenic condensation of mesenchymal cells (von
der Mark and von der Mark, 1977). These changes involve
a loss of fibrillar-actin-based cytoskeleton, accumulation of
cortical actin and changes in the adhesive properties (Idowu
et al., 2000). Integrins stimulate the formation of signaling
complexes mediating cell attachment to ECMs and play an
important role in morphogenesis (Schwartz et al., 1995).
Included within these signaling complexes are scaffolding
proteins such as talin, paxillin, o-actinin and kinases including
FAK and integrin-linked kinase (Lo, 2006). Several data
suggest that actin dynamics control chondrogenesis
(Daniels and Solursh, 1991, Kim et al., 2003, Hwang et al.,
2006). Chondrocytes plated in a monolayer culture tend to
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Fig. 2. Schematic diagram showing the signaling pathways of TGF-$ and BMP in the regulation of cell-cell adhesion and cell-matrix interaction.
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change morphology to flattened cells and to cease
production of collagen II, a typical marker of chondrogenic
differentiation (von der Mark et al., 1977; Grundmann et
al., 1980). These dedifferentiated chondrocytes return to
round morphology and exhibit increased production of
collagen II with the addition of dihydrochalasin B or
cytochalasin D, inhibitors of actin polymerization (Zanetti
and Solursh, 1984; Brown and Benya, 1988; Loty et al.,
1995; Lee at al., 2007).

FACTORS REGULATING CELL-CELL AND CELL-
MATRIX INTERACTIONS

Chondrogenesis has been shown to be under the regulation
of a number of growth and differentiation factors that
initiate or suppress cellular signaling pathways and
transcription of specific genes (Shimizu et al, 2007). The
transforming growth factor § (TGF-) superfamily such as
TGF-B proteins and bone morphogeneric proteins (BMPs)
contains a conserved C-terminal domain with several
cysteine residues (Massague et al., 1992; Kingsley et al.,

1994) which acts through activation of respective receptors
followed by down-signaling pathways (Shi and Massague,
2003). TGF-p and BMP signals are mediated by Smad
transcription factors that bind to type I receptor and are
phosphorylated following ligand binding to type II receptor
(Fig. 2). Both the BMP receptor-associated Smads (1, 5,
and 8) and the TGF-p receptor-associated Smads (2 and 3)
are released into the cytoplasm upon phosphorylation,
complex with Smad4 followed by translocation to the
nucleus, where they regulate gene expression (Massague et
al., 1997; Shi and Massague, 2003). Because TGF-§ receptor-
and BMP receptor-associated Smads compete for Smad4
and other downstream signaling molecules, these pathways
antagonize one another depending upon cell types (Candia
etal.,, 1997). They also have opposing effects in chondrogenesis
in which TGF-f inhibits (Ballock et al., 1993; Jin et al.,
2008) and BMP promotes (Leboy et al., 1997; Grimsrud et
al., 1999; Jin et al., 2006a) chondrogenic differentiation. On
the other hand, both TGF- and BMP have been shown to
enhance chondrogenesis in murine mesenchymal cells with
the most robust effect in response to BMP signaling (Tuan
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2003; Zhang et al., 2004). BMP signaling is required for
both the formation of precartilaginous condensations and
the differentiation of precursors into chondrocytes (Yoon et
al., 2005).

TGF-B and BMP signals act in combination with other
signaling pathways. In ATDCS5 cells (Watanabe et al., 2001)
and chick limb bud mesenchymal cells (Jin et al., 2006b),
stimulation of chondrogenesis by TGF-p or BMP-2 is
mediated by the p38 and Erk1/2 MAP kinase pathways as
well as activation of the Smad pathways. Furthermore, the
Wnt/B-catenin signaling i vivo appears to inhibit chondrogenesis
in human mesenchymal stem cells (Day et al. 2005) and
chick limb bud mesenchymal cells (Jin et al., 2006a). Wnt-
5a expressed in limb mesenchyme and Wnt-7a expressed in
the dorsal ectoderm of the limb bud have been proposed to
be involved in the early events of chondrogenesis, particularly
with respect to N-cadherin-related activities (Tuan, 2003;
Tuli et al., 2003; Daumer et al., 2004; Modarresi et al.,
2005). TGF-B and BMP signals act synergistically with
Whnt/B-catenin signaling and modulate chondrogenesis by
regulating N-cadherin- and Sox-9-related activity (Fisher et
al., 2002; Zhou et al., 2004; Jin et al., 2006a), respectively.
Overall, it is clear that BMP- and TGF-B-signalings are
critical for regulation of chondrogenic differentiation (Fig.
2). However, these pathways are only a part of multiple
signaling events that contribute to the regulation of
chondrogenic commitment.

Sox9 is a transcription factor which belongs to the SRY
(sex-determining region on the Y chromosome) family and
contains the HMG (high mobility group) box DNA domain
(Wright et al., 1995). Sox 9 is expressed in all chondro-
progenitors and chondrocytes and is absolutely required for
prechondrogenic condensation (Zhao et al., 1997). It has
been shown that Sox9~ cells in chimaeric mouse are excluded
from the aggregating mesenchyme of the prechondrogenic
cells autonomously (Bi et al., 1999). Moreover, removal of
Sox9 from mouse limb mesenchymal cells prior to the
onset of condensation results in complete absence of
prechondrogenic condensation, leading to formation of
extremely short limbs without any skeletal components
(Akiyama et al., 2002). The expression of Sox9 proteins is
dependent upon BMP signaling via BMP-receptors, which
are functionally redundant and active in chondrocyte
condensations but not in the perichondrium (Yoon et al.,
2005). These studies indicate that Sox9 is indispensable for
mesenchymal condensation.

Modulation of cell-matrix interactions occurs through
the action of unique proteolytic systems responsible for
hydrolysis of a variety of ECM components. Matrix
metalloproteinases (MMPs) are a major group of enzymes
that regulate cell-matrix composition through the turnover
of ECMs and that function as key regulators of cell-ECM
interactions during development and differentiation (Vum
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and Werb, 2000; Somerville et al., 2003; Mott and Werb,
2004; Mannello et al., 2005). Several MMP are expressed
during endochondral ossification including MMP-2, -3, -9,
-10, -13, and -14 (MT1-MMP) (Bord et al., 1997; Johansson
et al., 1997; Bord et al., 1998; Zhou et al., 2000). In the
avian species, MMP-2, -3, -9, -13, and -16 (MT3-MMP)
have been cloned (Yang et al., 1996; D’ Angelo et al., 2000;
Tong et al., 2003), but MMP-10 and -14 have not yet been
identified. The involvement of MMPs in skeletal growth
indicates the importance of proper ECM remodeling as a
major limiting factor for vital parts of the long bone
developmental process, including apoptosis, angiogenesis
and osteoblast recruitment (Si-Tayeb et al., 2006; Amalinei
et al., 2007; Chetty et al., 2007; Shi et al., 2007). Mice
lacking both MMP-9 and MMP-13 show a severe
endochondral bone phenotype with drastically shortened
long bones with a diminished ECM remodeling, prolonged
chondrocyte survival, delayed vascular recruitment and
defective trabecular bone formation (Tuckermann et al.,
2000; Stickens et al., 2004; Ortega et al., 2005). MT1-
MMP (MMP-14) knockout mice have severe skeletal
development defects such as craniofacial dysmorphism and
dwarfism due to a decreased proliferation by proliferative
chondrocytes at the growth plate (Holmbeck et al., 1999).
High levels of MMP-2 is detected in osteoarthritic cartilage
and synovial fluid (Imai et al., 1997; Volk et al., 2003) and
testican-1, an inhibitor of pro-MMP-2 activation, is expressed
in joint and growth plate cartilage (Hausser et al., 2004)
suggesting the involvement of MMP-2 in the remodeling of
cartilage ECM. MMP-2 was also found to function as a
negative regulator of the integrin 1 mediated cell-matrix
interaction through FAK, thereby leading to inhibit
precartilage condensation of chick leg bud mesenchymal
cells (Jin et al., 2007). Together, these findings suggest that
MMPs participate in the regulation of matrix turnover in
cartilage and chondrogenesis. However, the detailed regulating
mechanisms remain to be elucidated.

CONCLUDING REMARKS

The transformation of loosely packed mesenchymal cells
into highly organized and patterned skeletal structures
requires complicated cell-cell and cell-matrix interaction
mediated by various regulatory molecules and cellular
signaling pathways. Alteration and modification of extracellular
composition is crucial for cell-cell and cell-matrix
interaction during differentiation of mesenchymal cells into
chondrocytes. Elucidation of mechanism integrating
signals involved in cell-cell and cell-matrix interaction will
contribute to a better understanding of the cellular and
molecular basis of cartilage formation during normal
development, and to therapeutic approaches for cartilage
and bone repair.
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