• Title/Summary/Keyword: multi-channel audio

Search Result 77, Processing Time 0.026 seconds

A Performance Measurement of Multi-channel Audio codec for HDTV Satellite Broadcasting (고선명 TV 위성 방송을 위한 멀티 채널 오디오의 성능 평가)

  • 김성한;장대영;홍진우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.1
    • /
    • pp.71-76
    • /
    • 1997
  • In this paper, we describe simulation results of subjective assessments with bit rate variation of multi-channel audio codec system for the services of HDTV satellite broadcasting services. Based on this experiment results, we also describe the specification and subjective performance results for 4-channel audio codec. For multi-channel, bit rates are 384,320,256,128kbps and the results show that 320kbps bit rate is needed to compare with the original and the reproduced signal. Based on this, for 384kbps for 4-channel audio codec, three items that achieve a diffgrade worse than -0.5 are due to the noise of analog output module. This system is satisfied for the audio codec of the HDTV system.

  • PDF

A Spatial Audio System Using Multiple Microphones on a Rigid Sphere

  • Lee, Tae-Jin;Jang, Dae-Young;Kang, Kyeong-Ok;Kim, Jin-Woong;Jeong, Dae-Gwon;Hamada, Hareo
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.153-165
    • /
    • 2005
  • The main purpose of a spatial audio system is to give a listener the same impression as if he/she were present in a recorded environment. A dummy head microphone is generally used for such purposes. Because of its human-like shape, we can obtain good spatial sound images. However, its shape is a restriction on its public use and it is difficult to convert a 2-channel recording into multi-channel signals for an efficient rendering over a multi-speaker arrangement. In order to solve the problems mentioned above, a spatial audio system is proposed that uses multiple microphones on a rigid sphere. The system has five microphones placed on special points of the rigid sphere, and it generates audio signals for headphone, stereo, stereo dipole, 4-channel, and 5-channel reproduction environments. Subjective localization experiments show that front/back confusion, which is a common limitation of spatial audio systems using the dummy head microphone, can be reduced dramatically in 4-channel and 5-channel reproduction environments and can be reduced slightly in a headphone reproduction.

  • PDF

Quality Assessment and Predistortion Evaluation of the Multi-channel Audio Codec according to the bitrate changing (압축율 변화에 따른 멀티채널 오디오의 품질 및 Predistortion 의 영향 평가)

  • Cha, Kyung-Hwan;Jang, Dae-Young;Kim, Sung-Han;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.55-60
    • /
    • 1996
  • This paper describes the subjective assessment of the multi-channel audio quality according to the bitrate changing and evaluates the predistortion effect to avoid the unmasked noise after matrixing/dematrxing process in transmission and regeneration of the multi-channel audio. The simulation is processed by the perceptual coding that is MPEG-2 Audio layer II algorithm. We evaluate the quality improvement about predistortion using or not by 384, 320, 256, 128kbps. As the result of the double blind subjective assessment, 5 Grade-Impairment Scale is scored under minus one to 320kbps and so audio quality is evaluated to be perceptible, but not annoying in 3/2 channel. The effect of the predistortion is improved one level in 128kbps and especially speech test material I better improved than music test materials.

  • PDF

Implementation of the TMS320C6701 DSP Board for Multichannel Audio Coding (멀티채널 오디오 부호화를 위한 TMS320C6701 DSP 보드 구현)

  • 장대영;홍진우;곽진석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.199-203
    • /
    • 1999
  • This paper is on the DSP system design and implementation for real time MPEG-2 AAC multichannel audio, and MPEG-4 object oriented audio coding. This DSP system employs two DSPs of the state of the art TMS320C6701, developed by TI semiconductor. DSP board has PCI interface for downloading application program and control the system. DSP board was designed to use for both encoder and decoder, by setting several switches. The system contains external input and output box also, for A/D and D/A conversion for eight channel audio. The input box converts multi channel digital audio to ADI format, that provides serial interface for eight channel digital audio. And the output box converts ADI format signal to multi channel audio. Through this ADI interface, DSP boards can be connected to input, output box. Implemented DSP system was tested for integration with MPEG-2 AAC encoder and decoder S/W. Currently the DSP system performs realtime AAC 4-channel audio encoding with two DSPs, and 8-channel decoding with one DSP.

  • PDF

High Quality Multi-Channel Audio System for Karaoke Using DSP (DSP를 이용한 가라오케용 고음질 멀티채널 오디오 시스템)

  • Kim, Tae-Hoon;Park, Yang-Su;Shin, Kyung-Chul;Park, Jong-In;Moon, Tae-Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • This paper deals with the realization of multi-channel live karaoke. In this study, 6-channel MP3 decoding and tempo/key scaling was operated in real time by using the TMS320C6713 DSP, which is 32 bit floating-point DSP made by TI Co. The 6 channel consists of front L/R instrument, rear L/R instrument, melody, and woofer. In case of the 4 channel, rear L/R instrument can be replaced with drum L/R channel. And the final output data is generated as adjusted to a 5.1 channel speaker. The SOLA algorithm was applied for tempo scaling, and key scaling was done with interpolation and decimation in the time domain. Drum channel was excluded in key scaling by separating instruments into drums and non-drums, and in processing SOLA, high-quality tempo scaling was made possible by differentiating SOLA frame size, which was optimized for real-time process. The use of 6 channels allows the composition of various channels, and the multi-channel audio system of this study can be effectively applied at any place where live music is needed.

Sound Quality Enhancement in MPEG Surround by Using ILD Distortion (ILD DISTORTION을 이용한 MPEG SURROUND의 음질 개선)

  • Chon, Sang-Bae;Choi, In-Yong;Sung, Koeng-Mo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.241-242
    • /
    • 2006
  • MPEG Surround is an audio coding technology that represents multi-channel audio signal with downmixed audio signal(s) and very low bitrate side information based on Binaural Cue Coding. The side information consists of Inter-Channel Level Difference, Inter-Channel Correlation, and payloads. These two parameters are correspondent to the well-known spatial parameters in psycho-acoustics, Inter-aural Level Difference (ILD) and Inter-Aural Cross Correlation (IACC). Though ICLD is to provide perceptually equivalent ILD to the listener, however, the ILD of the original multi-channel audio signal and that of the MPEG Surround encoded signal was different. The difference between two ILD values is defined as ILD Distortion (ILDD). This paper provides how ILDD can be applied to enhance sound quality in MPEG Surround and how much ILDD is decreased.

  • PDF

A Performance Assessment of Real-time Multichannel Audio Codec

  • Kim, Sunghan;Jang, Daeyoung;Hong, Jinwoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3E
    • /
    • pp.56-61
    • /
    • 1997
  • In this paper, we describe a real-time implementation of a multi-channel auido codec system that is based on the MPEG-1 audio algorithm. The major feature of this system is that it has a flexible multi-DSP system that can be adapted for various applications with using up to four TMS320C40 DSPs. The purpose of this paper is to present the problems of the system and is to describe the optimized methods to solve the problems in the view of hardware and software. Our audio codec is composed of an encoder an a decoder system and the bit rate of bitstream is up to 384 kbps. Fast input/output interfaces, DSP overloads, and inter-DSP communications methods with high speed are considered in multi-DSP H/W. Also, to run real-time in S/W, optimizing methods of algorithm are considered. After implementation of system, the subjective assessment method, and 'triple stimulus/hidden reference/double blind' that recommended by ITU-R TG10/3 is adopted for the quality of our system. All test items except one are awarded difference grades(diffgrade) better than 1-. Form the results, multi-channel audio system can be used for HDTV service.

  • PDF

Spatial Audio Signal Processing Technology Using Multi-Channel 3D Microphone (멀티채널 3차원 마이크를 이용한 입체음향 처리 기술)

  • Kang Kyeongok;Lee Taejin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.68-77
    • /
    • 2005
  • The purpose of a spatial audio system is to give a listener an impression as if he were present in a recorded environment when its sound is reproduced. For this purpose a dummy head microphone is generally used. Because of its human-like shape, dummy head microphone can reproduce spatial images through headphone reproduction. However, its shape and size are restriction to public use and it is difficult to convert the output signal of dummy head microphone into a multi-channel signal for multi-channel environment. So, in this paper, we propose a multi-channel 3D microphone technology. The multi-channel 3D microphone acquire a spatial audio using five microphones around a horizontal plane of a rigid sphere and through post processing, it can reproduce various reproduction signals for headphone, stereo, stereo dipole, 4ch and 5ch reproduction environments. Because of complex computation, we implemented H/W based post processing system. To verily the Performance of the multi-channel 3D microphone, localization experiments were Performed. The result shows that a front/back confusion, which is the one of common limitations of conventional dummy head technology, can be reduced dramatically.

An Efficient Representation Method for ICLD with Robustness to Spectral Distortion

  • Beack, Seung-Kwon;Seo, Jeong-Il;Kang, Kyung-Ok;Hanh, Min-Soo
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.330-333
    • /
    • 2005
  • The Inter-Channel Level Difference (ICLD) is a cue parameter to estimate spectral information in a binaural cue coding that has been recently in the spotlight as a multichannel audio signal compression technique. Even though the ICLD is an essential parameter, it is generally distorted by quantization. In this paper, a new modified ICLE representation method to minimize the quantization distortion is proposed by adopting a flexible determination of the reference channel and the unidirectional quantization. Our experimental result confirms that the proposed method improves the multichannel audio output quality even with the reduced bit-rate.

  • PDF

Angle-Based Virtual Source Location Representation for Spatial Audio Coding

  • Beack, Seung-Kwon;Seo, Jeong-Il;Moon, Han-Gil;Kang, Kyeong-Ok;Hahn, Min-Soo
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.219-222
    • /
    • 2006
  • Virtual source location information (VSLI) has been newly utilized as a spatial cue for compact representation of multichannel audio. This information is represented as the azimuth of the virtual source vector. The superiority of VSLI is confirmed by comparison of the spectral distances, average bit rates, and subjective assessment with a conventional cue.

  • PDF