• Title/Summary/Keyword: multi-channel MAC protocol

Search Result 65, Processing Time 0.026 seconds

The Efficiency Design & MAC Function of the Composition Optical Network (광통신망 구축의 효과적인 설계 및 MAC고려 요소)

  • 하창국
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.4
    • /
    • pp.41-47
    • /
    • 2001
  • The paper describes SR3 (Synchronous Round Robin with Reservations), a collision-free medium access control protocol for all-optical slotted packet networks based on WDM multi-channel ring topologies where nodes are equipped with one fixed-wavelength receiver and one wavelength-tunable transmitter SR3 is derived from the SRR and MMR protocols previously proposed by the same authors for the same class of all-optical networks. SRR and MMR already achieve an efficient exploitation of the available bandwidth, while guaranteeing a throughput-fair access to each node. SR3, In addition, allows nodes to reserve slots. thereby achieving a stronger control on access delays; it is thus well suited to meet tight delay requirements, as it is the case for multimedia applications. Simulation results show that SR3 provides very good performance to guaranteed qualify traffic, but also brings signigicant performance improvements for best-effort traffic. Energy effciency is an important issue for optical network since they must rely on their batteries. We present a novel MAC protocol that achieves a good energy efficiency of optical interface of the network and provides support for diverse traffic types and QoS. The scheduler of the base station is responsible to provide the required QoS to connections on the optical link and to minimise the amount of energy spend by the High speed Network. The main principles of the MaC protocol are to avoid unsuccessful actions, minimise the number of transitions , and synchronise the mobile and the base-station. We will show that considerable amounts of energy can be saved using these principles.

  • PDF

Multi channel reservation scheme for underwater sensor network (수중 센서 네트워크에서 다중 채널 예약방법)

  • Lee, Dong-Won;Kim, Sun-Myeng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.336-339
    • /
    • 2011
  • In the RTLS(Real Time Location Based System), in case of existing a number of moving target, extremely complecated data flow is can be occurred. In the network where single gateway exists, various data which was collected from sensor node is transmitted along the simple route as time goes by. In case of multi-gateway configuration, the collected data is transmitted through diverse routes rather than simple route. This kind of data causes jams on nodes and this brings down the performance of the network. Different from existing studies, in this thesis, MAC (Media Access Control) protocol which minimizes data collision between nodes and guarantees QoS(Quality of Service) is suggested, in order to communicate efficiently in multi-gateway underwater sensor network environment. In the suggested protocol, source node which wants to transmit data makes a channel reservation to a number of destination node using a RTS packet. Source node reserves a channel without collision, by scheduling CTS response time using expected delay information from neighbor nodes. Once the reservation is made, source node transmit data packet without collision. This protocol analyzes/estimates the performance compared to a method provided from existing studies via simulation. As a results of the analysis, it was comfirmed that the suggested method has better performance, such as efficiency and delay.

  • PDF

D-ARP Scheme for Full Mesh Routing in Partial BMA Network (제한적 BMA 네트워크에서 Full Mesh 라우팅을 위한 D-ARP 기법)

  • Kim, Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1088-1094
    • /
    • 2021
  • This paper proposes a partial BMA (Broadcasting Multiple Access) network structure and D-ARP (Distributed Address Resolution Protocol) method in order to support full mesh routing function in the DAMA (Demand Assigned Multiple Access)-based MF-TDMA (Multi Frequency-Time Division Multiple Access) satellite system. The partial BMA network enables legacy router devices and routing protocols to be adopted in the satellite communication system, and decreases the amount of routing protocol overhead. In addition, we introduce the D-ARP method that help a spoke satellite node acquiring the MAC (Media Access Control) address from remote satellite nodes in none BMA satellite network. The D-ARP method provides the MAC address of remote nodes to each other nodes through the broadcasting-enabled satellite channel. And we lastly evaluate and analysis the network performance of the proposed approach.

QoS Improvement Method for Real Time Traffic in Wireless Networks (무선망에서 실시간 트래픽을 위한 QoS 향상 기법)

  • Kim, Nam-Hee;Kim, Byun-Gon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.6
    • /
    • pp.34-42
    • /
    • 2008
  • MAC(Medium Access Control) is demanded to provide end-to-end QoS(Quality of Service) for a variety of traffic in the wireless networks. When all the traffic is integrated in the channel, the main difficulty of the MAC protocol is how to efficiently support multi-class traffic in the limited bandwidth wireless channel. In this paper, we proposed the dynamic bandwidth slot method for improving QoS of the real time traffics. In this paper, we used in-band scheme to send dynamic parameter and considering buffer size and delay variation, we enabled 2 state bits to send to base station in mobile station. The proposed algorithm is to guarantee QoS of real time traffic and maximize transfer efficiency in wireless networks.

Multi-Channel MAC Protocol Based on V2I/V2V Collaboration in VANET (VANET에서 V2I/V2V 협력 기반 멀티채널 MAC 프로토콜)

  • Heo, Sung-Man;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.96-107
    • /
    • 2015
  • VANET technologies provide real-time traffic information for mitigating traffic jam and preventing traffic accidents, as well as in-vehicle infotainment service through Telematics/Intelligent Transportation System (ITS). Due to the rapid increasement of various requirements, the vehicle communication with a limited resource and the fixed frame architecture of the conventional techniques is limited to provide an efficient communication service. Therefore, a new flexible operation depending on the surrounding situation information is required that needs an adaptive design of the network architecture and protocol for efficiently predicting, distributing and sharing the context-aware information. In this paper, Vehicle-to-Infrastructure (V2I) based on communication between vehicle and a Road Side Units (RSU) and Vehicle-to-Vehicle (V2V) based on communication between vehicles are effectively combined in a new MAC architecture and V2I and V2V vehicles collaborate in management. As a result, many vehicles and RSU can use more efficiently the resource and send data rapidly. The simulation results show that the proposed method can achieve high resource utilization in accordance. Also we can find out the optimal transmission relay time and 2nd relay vehicle selection probability value to spread out V2V/V2I collaborative schedule message rapidly.

Low-Latency Implementation of Multi-channel in AoIP/UDP-based Audio Communication (AoIP/UDP 기반 오디오 통신의 다중 채널 Low-Latency 구현)

  • Seung-Do Yang;Jin-ku Choi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.59-64
    • /
    • 2023
  • Fire and disaster broadcasting systems are divided into analog, digital, and network-based digital public address systems, and important specifications in network-based digital public address systems are low-latency audio, high sampling rate, and multi-channel input and output. In the past, it has been widely used to the AoE method for distinguishing based on the MAC address of the data link layer. However, this method has a problem of increasing complexity and cost. This proposal is an AoIP/UDP method, which allows communication to be easily distinguished by IP address without the need for a separate redundant network, so that the network can be freely used and configured, and cost can be reduced by reducing complexity. After implementing the AoIP/UDP method, the experimental results showed that the cost was improved with the equivalent performance with 2.66ms latency.

A MU-MIMO User Scheduling Mechanism based on Active CSI Exchange (능동적 CSI 교환을 기반으로 한 MU-MIMO 유저 스케줄링 기법)

  • Lee, Kyu-Haeng;Kim, Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.41 no.4
    • /
    • pp.192-201
    • /
    • 2014
  • User scheduling boosts the Multi-User Multi-Input Multi-Output (MU-MIMO) gain by selecting an optimal set of users to increase the 802.11 Wi-Fi system capacities. Many kinds of user scheduling algorithms, however, fail to realize the advantages of MU-MIMO due to formidable Channel State Information (CSI) overhead. In this paper, we propose a user scheduling method considering such CSI exchange overhead and its MAC protocol, called ACE (Active CSI Exchange based User Scheduling for MU-MIMO Transmission). Unlike most proposals, where user scheduling is performed after an Access Point (AP) receives CSI from all users, ACE determines the best user set during the CSI exchange phase. In particular, the AP broadcasts a channel hint about previously scheduled users, and the remaining users actively send CSI reports according to their Effective Channel Gains (ECGs) calculated from the hint. Through trace-driven MATLAB simulations, we prove that the proposed scheme improves the throughput gain significantly.

Virtual Slot Multiple Access for Wireless Personal Area Network (WPAN을 위한 가상 슬롯 기반 다중 접근 방식)

  • Hwang Do-Youn;Kwon Eui-Hyeok;Lim Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.837-843
    • /
    • 2006
  • IEEE802.15.3 and IEEE802.15.4 have defined the hybrid MAC protocols based on TDMA and CSMA where a multi-frame TDMA structure is employed so that multiple data frames can be transmitted within one timeslot to guarantee minimum delay bounds of isochroous traffic. However, TDMA has an intrinsic problem that cannot dynamically allocate optimal length of timeslot to each station. Therefore the idle timeslot can be produced by stations when each transmission queue is instantaneously empty during its timeslot, which would waste lots of timeslots especially in the multi-frame TDMA systems. In this paper, we propose a more flexible multiple-access scheme for the multi-frame TDMA system based on the concept of virtual slot which is accessible by every station with the highest priority for slot owner and lower priority for other stations. Finally, our simulation results from various environments show that proposed scheme can achieve magnitude improvement of total system throughput and average message delay by maximizing channel utilization.

Optimization of Resource Allocation for Inter-Channel Load Balancing with Frequency Reuse in ASO-TDMA-Based VHF-Band Multi-Hop Data Communication System (ASO-TDMA기반 다중-홉 VHF 대역 데이터 통신 시스템의 주파수 재사용을 고려한 채널간 부하 균형을 위한 자원 할당 최적화)

  • Cho, Kumin;Lee, Junman;Yun, Changho;Lim, Yong-Kon;Kang, Chung G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1457-1467
    • /
    • 2015
  • Depending on the type of Tx-Rx pairs, VHF Data Exchange System (VDES) for maritime communication is expected to employ the different frequency channels. Load imbalance between the different channels turns out to be a critical problem for the multi-hop communication using Ad-hoc Self-Organizing TDMA (ASO-TDMA) MAC protocol, which has been proposed to provide the connectivity between land station and remote ship stations. In order to handle the inter-channel load imbalance problem, we consider a model of the stochastic geomety in this paper. After analyzing the spatial reuse efficiency in each hop region by the given model, we show that the resource utility can be maximized by balancing the inter-channel traffic load with optimal resource allocation in each hop region.

A Reservation-based HWMP Routing Protocol Design Supporting E2E Bandwidth in TICN Combat Wireless Network (TICN 전투무선망에서의 종단간 대역폭을 보장하는 예약 기반 HWMP 라우팅 프로토콜 설계)

  • Jung, Whoi Jin;Min, Seok Hong;Kim, Bong Gyu;Choi, Hyung Suk;Lee, Jong Sung;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.160-168
    • /
    • 2013
  • In tactical environment, tactical wireless networks are generally comprised of Tactical MANETs(T-MANETs) or Tactical WMNs(T-WMNs). The most important services in tactical network are voice and low rate data such as command control and situation awareness. These data should be forwarded via multi-hop in tactical wireless networks. Urgent and mission-critical data should be protected in this environment, so QoS(Quality of Service) must be guaranteed for specific type of traffic for satisfying the requirement of a user. In IEEE 802.11s, TDMA-based MAC protocol, MCCA(MCF Controlled Channel Access), has a function of resource reservation. But 802.11s protocol can not guarantee the end-to-end QoS, because it only supports reservation with neighbors. In this paper, we propose the routing protocol, R-HWMP(Reservation-based HWMP) which has the resource reservation to support the end-to-end QoS. The proposed protocol can reserve the channel slots and find optimal path in T-WMNs. We analyzed the performance of the proposed protocol and showed that end-to-end QoS is guaranteed using NS-2 simulation.