• Title/Summary/Keyword: multi-cells

Search Result 829, Processing Time 0.024 seconds

Multi-load Automated Storage/Retrieval Systems (복수운반형 자동창고)

  • Rim, Suk-Chui;Kim, Yong-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.2
    • /
    • pp.239-254
    • /
    • 1995
  • Automated Storage/Retrieval (AS/R) systems have been used mostly in manufacturing or distribution industry in order to store or retrieve palletized items automatically. Since the items ore heavy or bulky, only one pallet at a time is moved by the stacker crane In this study, however, we introduce the "multi -load" AS/R system in which the items to be stored are data storage devices of equal size such as video tape or compact disc. Since the items are small and light multiple items can be stored and retrieved in each trip by using a magazine and a robot arm mounted on the crane Given the magazine capacity, and the locations of retrieval items and empty cells in the rack, the throughput of the multi-load AS/R system will depend on the selection of storage locations and the sequence of visits. We propose four heuristic algorithms for the multi-command. Computer simulation is used to evaluate the four algorithms in terms of throughput and number of back tracking of the crane.

  • PDF

외국의 코호트 연구 현황

  • Jo Seong-Il
    • 대한예방의학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.30-37
    • /
    • 2003
  • o Cohort study became the major approach to study of chronic diseases such as CVD and cancer o Cohort can be population-based or volunteer-based o Types of be population-be categorized by source population and selection mechanism o More and more cohort studies involve biological specimens, such as blood, urine, toenail, cheek cells, etc. o Multi-center and multi-national collaboration is an effective way to increase sample size. o Current statistical method typically use time-to-event analysis by Cox proportional hazard model.

  • PDF

Characterization of Rabbit Retinal Ganglion Cells with Multichannel Recording (다채널기록법을 이용한 토끼 망막 신경절세포의 특성 분석)

  • Cho Hyun Sook;Jin Gye-Hwan;Goo Yong Sook
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.228-236
    • /
    • 2004
  • Retinal ganglion cells transmit visual scene as an action potential to visual cortex through optic nerve. Conventional recording method using single intra- or extra-cellular electrode enables us to understand the response of specific neuron on specific time. Therefore, it is not possible to determine how the nerve impulses in the population of retinal ganglion cells collectively encode the visual stimulus with conventional recording. This requires recording the simultaneous electrical signals of many neurons. Recent advances in multi-electrode recording have brought us closer to understanding how visual information is encoded by population of retinal ganglion cells. We examined how ganglion cells act together to encode a visual scene with multi-electrode array (MEA). With light stimulation (on duration: 2 sec, off duration: 5 sec) generated on a color monitor driven by custom-made software, we isolated three functional types of ganglion cell activities; ON (35.0$\pm$4.4%), OFF (31.4$\pm$1.9%), and ON/OFF cells (34.6$\pm$5.3%) (Total number of retinal pieces = 8). We observed that nearby neurons often fire action potential near synchrony (< 1 ms). And this narrow correlation is seen among cells within a cluster which is made of 6~8 cells. As there are many more synchronized firing patterns than ganglion cells, such a distributed code might allow the retina to compress a large number of distinct visual messages into a small number of ganglion cells.

  • PDF

Unit Cell Analysis of Satin Weave Composites Using Macroelements (수자직 복합재료 단위구조의 마크로요소해석)

  • 우경식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.35-41
    • /
    • 1997
  • Unit cell analyses were peformed to study the engineering properties of satin weave textile composites. Two 5-harness satin weave layers with fiber tow shifts were modeled by unit cells and repeating boundary conditions were applied at the outer surface of the unit cells. Multi-field macroelements were employed to consider the microstructure details and to effectively reduce computer memory requirements. Preliminary results indicated that the engineering properties of 5-harness satin weave textile composites can vary significantly according to the manner how the adjacent fiber tows were arranged in stacking.

  • PDF

Multiparameter Flow Cytometry: Advances in High Resolution Analysis

  • O'Donnell, Erika A.;Ernst, David N.;Hingorani, Ravi
    • IMMUNE NETWORK
    • /
    • v.13 no.2
    • /
    • pp.43-54
    • /
    • 2013
  • Over the past 40 years, flow cytometry has emerged as a leading, application-rich technology that supports high-resolution characterization of individual cells which function in complex cellular networks such as the immune system. This brief overview highlights advances in multiparameter flow cytometric technologies and reagent applications for characterization and functional analysis of cells modulating the immune network. These advances significantly support highthroughput and high-content analyses and enable an integrated understanding of the cellular and molecular interactions that underlie complex biological systems.

Industry Applicable Future Texturing Process for Diamond wire sawed Multi-crystalline Silicon Solar Cells: A review

  • Ju, Minkyu;Lee, Youn-Jung;Balaji, Nagarajan;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Current major photovoltaic (PV) market share (> 60%) is being occupied by the multicrystalline (mc)-silicon solar cells despite of low efficiency compared to single crystalline silicon solar cells. The diamond wire sawing technology reduces the production cost of crystalline silicon solar cells, it increases the optical loss for the existing mc-silicon solar cells and hence its efficiency is low in the current mass production line. To overcome the optical loss in the mc-crystalline silicon, caused by the diamond wire sawing, next generation texturing process is being investigated by various research groups for the PV industry. In this review, the limitation of surface structure and optical loss due to the reflectivity of conventional mc-silicon solar cells are explained by the typical texturing mechanism. Various texturing technologies that could minimize the optical loss of mc-silicon solar cells are explained. Finally, next generation texturing technology to survive in the fierce cost competition of photovoltaic market is discussed.

Thin Film Si-Ge/c-Si Tandem Junction Solar Cells with Optimum Upper Sub- Cell Structure

  • Park, Jinjoo
    • Current Photovoltaic Research
    • /
    • v.8 no.3
    • /
    • pp.94-101
    • /
    • 2020
  • This study was trying to focus on achieving high efficiency of multi junction solar cell with thin film silicon solar cells. The proposed thin film Si-Ge/c-Si tandem junction solar cell concept with a combination of low-cost thin-film silicon solar cell technology and high-efficiency c-Si cells in a monolithically stacked configuration. The tandem junction solar cells using amorphous silicon germanium (a-SiGe:H) as an absorption layer of upper sub-cell were simulated through ASA (Advanced Semiconductor Analysis) simulator for acquiring the optimum structure. Graded Ge composition - effect of Eg profiling and inserted buffer layer between absorption layer and doped layer showed the improved current density (Jsc) and conversion efficiency (η). 13.11% conversion efficiency of the tandem junction solar cell was observed, which is a result of showing the possibility of thin film Si-Ge/c-Si tandem junction solar cell.

Network Analysis and Neural Network Approach for the Cellular Manufacturing System Design (Network 분석과 신경망을 이용한 Cellular 생산시스템 설계)

  • Lee, Hong-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.1
    • /
    • pp.23-35
    • /
    • 1998
  • This article presents a network flow analysis to form flexible machine cells with minimum intercellular part moves and a neural network model to form part families. The operational sequences and production quantity of the part, and the number of cells and the cell size are taken into considerations for a 0-1 quadratic programming formulation and a network flow based solution procedure is developed. After designing the machine cells, a neural network approach for the integration of part families and the automatic assignment of new parts to the existing cells is proposed. A multi-layer backpropagation network with one hidden layer is used. Experimental results with varying number of neurons in hidden layer to evaluate the role of hidden neurons in the network learning performance are also presented. The comprehensive methodology developed in this article is appropriate for solving large-scale industrial applications without building the knowledge-based expert rule for the cellular manufacturing environment.

  • PDF

Solid Oxide Fuel Cells for Power Generation and Hydrogen Production

  • Minh, Nguyen Q.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Solid oxide fuel cells (SOFCs) have been under development for a variety of power generation applications. Power system sizes considered range from small watt-size units (e.g., 50-W portable devices) to very large multi-megawatt systems (e.g., 500-MW base load power plants). Because of the reversibility of its operation, the SOFC has also been developed to operate under reverse or electrolysis mode for hydrogen production from steam (In this case, the cell is referred to as solid oxide electrolysis cell or SOEC.). Potential applications for the SOEC include on-site and large-scale hydrogen production. One critical requirement for practical uses of these systems is long-term performance stability under specified operating conditions. Intrinsic material properties and operating environments can have significant effects on cell performance stability, thus performance degradation rate. This paper discusses potential applications of the SOFC/SOEC, technological status and current research and development (R&D) direction, and certain aspects of long-term performance degradation in the operation of SOFCs/SOECs for power generation/hydrogen production.

Avian tuberculosis in a mandarin duck (Aix galericulata) (원앙이에서의 결핵 발생 증례보고)

  • Lee, Hyuk-Su;Kim, Dae-Yong;Jean, Young-Hwa;Kim, Jae-Hoon;Shin, Nam-Sik;Lee, Gi-Hwan
    • Korean Journal of Veterinary Pathology
    • /
    • v.3 no.1
    • /
    • pp.51-54
    • /
    • 1999
  • A case of avian tuberculosis is reported in a 10-year-old female Mandarin duck (Aix galericulata). Numerous multi focal to coalescing, caseo-necrotic granulomas in variable sizes were scattered throughout the major parenchymal organs. Histologically, the granulomas have caseonecrotic and occasionally mineralized centers that are surrounded by macrophages, epithelioid cells and Langerhan's type multinucleated giant cells and then by lymphocytes and a few plasma cells and fibrosis. Ziehl - Neelsen's stain revealed myriads of acid-fast bacterial rods present in the cytoplasms of macrophages and multinucleated giant cells.

  • PDF